Human-induced changes in the environment have increased the number of stressors impacting aquatic organism. In the light of climate change and plastic pollution, thermal stress and microplastics (MP) have become two of the most intensively studied stressors in aquatic ecosystems. Previous studies, however, mostly evaluated the impacts of thermal and MP stress in isolation, thereby neglecting joint effects. To examine the combined effects of both, we exposed the freshwater mussel Dreissena polymorpha to irregular polystyrene MP (6.4, 160, 4000, 100,000 p mL) at either 14, 23 or 27 °C for 14 days and analyzed mortality, mussel activity and clearance rate, energy reserves, oxidative stress and the immunological state. Further, we exposed the mussels to diatomite (natural particle equivalent, 100,000 p mL) at each of the three water temperatures to compare MP and natural particle toxicity. An increase in water temperature has a pronounced effect on D. polymorpha and significantly affects the activity, energy reserves, oxidative stress and immune function. In contrast, the effects by MP are limited to a change in the antioxidative capacity without any interactive effects between MP and thermal exposure. The comparison of the MP with a diatomite exposure revealed only limited influence of the particle type on the response of D. polymorpha to high concentrations of suspended particles. The results indicate that MPs have minor effects on a freshwater mussel compared to thermal stress, neither alone nor as interactive effect. Limited MP toxicity could be based on adaptation mechanism of dreissenids to suspended solids. Nonetheless, MP may contribute to environmental impacts of multiple anthropogenic stressors, especially if their levels increase in the future. Therefore, we suggest integrating MP into the broader context of multiple stressor studies to understand and assess their joint impacts on freshwater ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.137253 | DOI Listing |
Bot Stud
January 2025
Crop Science Division, Taiwan Agricultural Research Institute, Ministry of Agriculture, Taichung, 413, Taiwan.
Background: Rice is a staple food for the global population. However, extreme weather events threaten the stability of the water supply for agriculture, posing a critical challenge to the stability of the food supply. The use of technology to assess the water status of rice plants enables the precise management of agricultural water resources.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832000, China. Electronic address:
The limited solubility, rapid metabolism, and poor bioavailability of curcumin restrict its application. In this study, we synthesized chickpea protein isolate (CPI)-citrus pectin (CP) conjugates to prepare an emulsion delivery system that enhances the stability and bioavailability of curcumin. The CPI-CP emulsion achieved a curcumin encapsulation efficiency of 86.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
January 2025
Biosciences, College of Life & Environmental Sciences, University of Exeter, UK; Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter, UK.
Fish are ectothermic animals with temperature playing a key role in their health, growth and survival. Greater occurrence of heat waves and temperature extremes, as a result of global climate change, has the potential to impact both wild and farmed populations. Within aquaculture, production is threatened by a multitude of stressors, including adverse temperatures.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Physics, Washington State University, Pullman, WA 99163, USA.
This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Metallurgy, Northeastern University, Shenyang 110819, China.
The constitutive model was commonly used to describe the flow stress of materials under specific strain, strain rate, and temperature conditions. In order to study the thermal-mechanical behavior of DH460 continuous casting steel during the solidification end heavy reduction (HR) process accurately. The high-temperature compression experiment was carried out, and phenomenological constitutive models were established based on the experimental results.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!