A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Arbuscular mycorrhizal fungi enhanced drought resistance in apple by regulating genes in the MAPK pathway. | LitMetric

Arbuscular mycorrhizal fungi enhanced drought resistance in apple by regulating genes in the MAPK pathway.

Plant Physiol Biochem

State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. Electronic address:

Published: April 2020

Arbuscular mycorrhizal fungi (AMF) can form a symbiotic relationships with most terrestrial plants and play an important role in plant growth and adaptation to various stresses. To study the role of AMF in regulating drought resistance in apple, the effects of drought stress on Malus hupehensis inoculated with AMF were investigated. Inoculation of AMF enhanced apple plants growth. Mycorrhizal plants had higher total chlorophyll concentrations but lower relative electrolyte leakage under drought stress. Mycorrhizal plants increased net photosynthetic rate, stomatal conductance, and transpiration rate under drought stress, however, they showed lower inhibition in the quantum yield of PSII photochemistry. Mycorrhizal plants also had higher superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) enzyme activities under drought conditions. Thus, mycorrhizal plants had lower accumulated MDA, HO, and O than non-mycorrhizal seedlings. Total sugar and proline concentrations also significantly increased, helping maintain the osmotic balance. Furthermore, mitogen-activated protein kinase (MAPK) cascades, which participate in the regulation of responses of plants and microorganisms to biotic and abiotic stress, were up-regulated in apple plants and AMF during drought. We saw that there were at least two motifs that were identical in MAPK proteins and many elements that responded to hormones and stress from these MAPK genes. In summary, our results showed that mycorrhizal colonization enhanced apple drought tolerance by improving gas exchange capacity, increasing chlorophyll fluorescence parameters, creating a greater osmotic adjustment capacity, increasing scavenging of reactive oxygen species (ROS), and using MAPK signals for interactions between AMF and their apple plant hosts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2020.02.020DOI Listing

Publication Analysis

Top Keywords

mycorrhizal plants
16
drought stress
12
arbuscular mycorrhizal
8
mycorrhizal fungi
8
drought
8
drought resistance
8
resistance apple
8
plants
8
enhanced apple
8
apple plants
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!