Antimicrobial photodynamic therapy efficacy against specific pathogenic periodontitis bacterial species.

Photodiagnosis Photodyn Ther

Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon-do, 25457, Republic of Korea. Electronic address:

Published: June 2020

AI Article Synopsis

  • The study examined the safety and effectiveness of aPDT using Toluidine Blue O (TBO) and LED light on oral cells and compared it to traditional antibiotics for treating periodontitis-causing bacteria.
  • The aPDT significantly reduced harmful bacteria like P. gingivalis, F. nucleatum, and A. actinomycetemcomitans, with cytotoxic effects comparable to standard antiseptics but no harm to beneficial oral bacteria.
  • Results showed aPDT's bactericidal effectiveness was on par with a common antibiotic combination (amoxicillin + metronidazole), suggesting it could be a safe alternative for treating periodontitis without damaging healthy tissue

Article Abstract

Background: To determine the safety and efficacy of antimicrobial photodynamic therapy (aPDT) combination of 0.33 mM Toluidine Blue O (TBO) with 60 mW/cm LED irradiation for 5 min that we had established, this study investigated the cytotoxic effect of aPDT combination on mammalian oral cells (gingival fibroblast and periodontal ligament cells) and compared the antimicrobial efficacy of antibiotics (the combination of amoxicillin (AMX) and metronidazole (MTZ)) against representative periodontitis pathogenic bacteria (Porphyromonas gingivalis, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans) versus our aPDT combination.

Result: aPDT combination did not show any detectable effect on the viability of Streptococcus sanguinis or Streptococcus mitis, the most common resident species in the oral flora. However, it significantly reduced CFU values of P. gingivalis, F. nucleatum, and A. actinomycetemcomitans. The cytotoxicity of the present aPDT combination to mammalian oral cells was comparable to that of standard antiseptics used in oral cavity. In antimicrobial efficacy test, the present aPDT combination showed equivalent bactericidal rate compared to the combination of AMX + MTZ, the most widely used antibiotics in the periodontitis treatment. The bactericidal ability of the AMX + MTZ combination was effective against all five bacteria tested regardless of the bacterial species, whereas the bactericidal ability of the aPDT combination was effective only against P. gingivalis, F. nucleatum, and A. actinomycetemcomitans, the representative periodontitis pathogenic bacterial species.

Conclusion: The present study demonstrated the safety and efficacy of the present aPDT combination in periodontitis treatment. TBO-mediated aPDT with LED irradiation has the potential to serve as a safe single or adjunctive antimicrobial procedure for nonsurgical periodontal treatment without damaging adjacent normal oral tissue or resident flora.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pdpdt.2020.101688DOI Listing

Publication Analysis

Top Keywords

apdt combination
28
combination
10
apdt
9
antimicrobial photodynamic
8
photodynamic therapy
8
bacterial species
8
safety efficacy
8
led irradiation
8
combination mammalian
8
mammalian oral
8

Similar Publications

Role of antimicrobial photodynamic therapy for the management of peri-implant diseases among habitual nicotinic product users: A systematic review.

Photodiagnosis Photodyn Ther

December 2024

Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia. Electronic address:

Objective: The objective was to systematically review original studies that assessed the influence of antimicrobial photodynamic therapy (aPDT) for managing peri-implant diseases among habitual nicotinic product (NP) users.

Methods: The research question was "Is aPDT effective for managing peri-implant diseases among NP users?" Indexed databases (PubMed/Medline, EMBASE, Scopus, and ISI Web of Knowledge) and Google Scholar were searched up to and including December 2024 without time and language barriers. Using Boolean operators, the following keywords were searched in different combinations: antimicrobial photodynamic therapy; crestal bone loss; peri-implant diseases; probing depth; nicotine; and smoking.

View Article and Find Full Text PDF

Antimicrobial resistance is currently one of the biggest challenges in controlling infectious diseases and was listed among the top 10 threats to global health by the World Health Organization (WHO) in 2023. The antibiotics misuse has led to the widespread emergence of antimicrobial resistance, marking the beginning of the alarming increase in antibiotic resistance. In this context, Antimicrobial Photodynamic Therapy (aPDT) has garnered significant attention from the scientific community due to its potential to effectively eliminate multidrug-resistant pathogenic bacteria and its low propensity to induce drug resistance, which bacteria can quickly develop against traditional antibiotic treatments.

View Article and Find Full Text PDF

Objective: This study aims to evaluate the efficacy of photodynamic therapy as an adjunct to conventional endodontic treatment in patients with apical periodontitis and fistulas. In this study, a fistula is characterized as a pathological conduit originating from the infected region at the root apex of the tooth, traversing the oral mucosa, and extending to the external surface of the gingiva. This pathological condition frequently complicates the management of endodontic infections, thereby necessitating the evaluation of supplementary therapeutic interventions.

View Article and Find Full Text PDF

dressing based on a D-π-A structured aggregation-induced emission photosensitizer for healing infected wounds.

J Mater Chem B

December 2024

School of Biomedical Engineering and Digital Health, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China.

Photodynamic antimicrobial therapy (aPDT) can effectively kill bacteria without promoting drug resistance. However, the phototoxicity of photosensitizers in aPDT against normal cells hinders their practical applications. In this work, we report the utilization of an aggregation-induced emission (AIE)-active photosensitizer, DTTPB, to develop antibacterial dressing for effective eradication of both Gram-positive and Gram-negative bacteria.

View Article and Find Full Text PDF

Potentiation of antimicrobial photodynamic therapy with potassium iodide and methylene blue: targeting oral biofilm viability.

Photochem Photobiol Sci

December 2024

Department of Health Sciences and Pediatric Dentistry, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (UNICAMP), P.O. BOX 52, Av. Limeira, 901, Piracicaba, SP, 13414-903, Brazil.

The study aimed to assess the impact of combining potassium iodide (KI) with methylene blue (MB) in antimicrobial photodynamic therapy (aPDT) within an oral biofilm formed in situ. A single-phase, 14 days in situ study involved 21 volunteers, who wore a palatal appliance with 8 bovine dentin slabs. These slabs were exposed to a 20% sucrose solution 8 times a day, simulating a high cariogenic challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!