SARM1 is the central executioner of pathological axon degeneration, promoting axonal demise in response to axotomy, traumatic brain injury, and neurotoxic chemotherapeutics that induce peripheral neuropathy. SARM1 is an injury-activated NAD cleavage enzyme, and this NADase activity is required for the pro-degenerative function of SARM1. At present, SARM1 function is assayed by either analysis of axonal loss, which is far downstream of SARM1 enzymatic activity, or via NAD levels, which are regulated by many competing pathways. Here we explored the utility of measuring cADPR, a product of SARM1-dependent cleavage of NAD, as an in cell and in vivo biomarker of SARM1 enzymatic activity. We find that SARM1 is a major producer of cADPR in cultured dorsal root ganglion (DRG) neurons, sciatic nerve, and brain, demonstrating that SARM1 has basal activity in the absence of injury. Following injury, there is a dramatic SARM1-dependent increase in the levels of axonal cADPR that precedes morphological axon degeneration. In vivo, there is also a rapid and large injury-stimulated increase in cADPR in sciatic and optic nerves. The increase in cADPR after injury is proportional to SARM1 gene dosage, suggesting that SARM1 activity is the prime regulator of cADPR levels. The role of cADPR as an important calcium mobilizing agent prompted exploration of its functional contribution to axon degeneration. We used multiple bacterial and mammalian engineered enzymes to manipulate cADPR levels in neurons but found no changes in the time course of axonal degeneration, suggesting that cADPR is unlikely to be an important contributor to the degenerative mechanism. Using cADPR as a SARM1 biomarker, we find that SARM1 can be partially activated by a diverse array of mitochondrial toxins administered at doses that do not induce axon degeneration. Hence, the subcritical activation of SARM1 induced by mitochondrial dysfunction may contribute to the axonal vulnerability common to many neurodegenerative diseases. Finally, we assay levels of both nerve cADPR and plasma neurofilament light chain (NfL) following nerve injury in vivo, and demonstrate that both biomarkers are excellent readouts of SARM1 activity, with cADPR reporting the early molecular changes in the nerve and NfL reporting subsequent axonal breakdown. The identification and characterization of cADPR as a SARM1 biomarker will help identify neurodegenerative diseases in which SARM1 contributes to axonal loss and expedite target validation studies of SARM1-directed therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7302925PMC
http://dx.doi.org/10.1016/j.expneurol.2020.113252DOI Listing

Publication Analysis

Top Keywords

sarm1
17
axon degeneration
16
cadpr
14
sarm1 activity
12
biomarker sarm1
8
axonal loss
8
sarm1 enzymatic
8
enzymatic activity
8
find sarm1
8
increase cadpr
8

Similar Publications

Programmed neurite degeneration in human central nervous system neurons driven by changes in NAD metabolism.

Cell Death Dis

January 2025

In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany.

Neurite degeneration (ND) precedes cell death in many neurodegenerative diseases. However, it remains unclear how this compartmentalized cell death process is orchestrated in the central nervous system (CNS). The establishment of a CNS axotomy model (using modified 3D LUHMES cultures) allowed us to study metabolic control of ND in human midbrain-derived neurons without the use of toxicants or other direct disturbance of cellular metabolism.

View Article and Find Full Text PDF

Gap junction intercellular communications regulates activation of SARM1 and protects against axonal degeneration.

Cell Death Dis

January 2025

State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.

Sterile alpha and Toll/interleukin-1 receptor motif containing 1 (SARM1), a nicotinamide adenine dinucleotide (NAD)-utilizing enzyme, mediates axon degeneration (AxD) in various neurodegenerative diseases. It is activated by nicotinamide mononucleotide (NMN) to produce a calcium messenger, cyclic ADP-ribose (cADPR). This activity is blocked by elevated NAD level.

View Article and Find Full Text PDF

Neurotrophic factors are critical for establishing functional connectivity in the nervous system and sustaining neuronal survival through adulthood. As the first neurotrophic factor purified, nerve growth factor (NGF) is extensively studied for its prolific role in axon outgrowth, pruning, and survival. Applying NGF to diseased neuronal tissue is an exciting therapeutic option and understanding how NGF regulates local axon susceptibility to pathological degeneration is critical for exploiting its full potential.

View Article and Find Full Text PDF
Article Synopsis
  • About 20% of familial ALS cases are linked to mutations in the SOD1 gene, and traumatic brain injury (TBI) is identified as a possible risk factor.
  • Researchers studied the effects of repetitive TBI on ALS progression in SOD1 mouse models and the role of Sarm1, a regulator of axonal degeneration.
  • Results showed that TBI worsened ALS symptoms and disease progression, but losing Sarm1 helped improve outcomes and reduced nerve damage, indicating potential for SARM1-targeted treatments.
View Article and Find Full Text PDF

A new and high performance polytetrafluoroethylene (PTFE) digestor was designed and fabricated in-house for the total dissolution of granite samples for the determination of technology-critical elements (TCEs) by inductively coupled plasma optical emission spectrometry (ICP-OES). Initially, the granite sample (∼0.25 g) was placed in the PTFE digestor and added 8 mL(v/v) of 20%HF+40%HCl+10%HNO acid mixture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!