AI Article Synopsis

  • Gastric electrical stimulation (GES) is a device-based treatment for nausea and vomiting caused by diabetic or idiopathic gastroparesis, but its exact working mechanism is still unknown.
  • A new noninvasive method involving compound nerve action potential (CNAP) was used to study vagal nerve involvement in GES therapy among 66 subjects, revealing key relationships between vagal responses and symptom improvement.
  • Results showed that stronger vagal activity correlated with reduced symptom scores, suggesting that optimizing GES using CNAP could enhance treatment for patients with idiopathic and type 1 diabetic gastroparesis.

Article Abstract

Background: Gastric electrical stimulation (GES) can be a life-changing, device-based treatment option for drug-resistant nausea and vomiting associated with diabetic or idiopathic gastroparesis (GP). Despite over two decades of clinical use, the mechanism of action remains unclear. We hypothesize a vagal mechanism.

New Method: Here, we describe a noninvasive method to investigate vagal nerve involvement in GES therapy in 66 human subjects through the compound nerve action potential (CNAP).

Results: Of the 66 subjects, 28 had diabetic GP, 35 had idiopathic GP, and 3 had postsurgical GP. Stimulus charge per pulse did not predict treatment efficacy, but did predict a significant increase in total symptom score in type 1 diabetics as GES stimulus charge per pulse increased (p < 0.01), representing a notable side effect and providing a method to identify it. In contrast, the number of significant left and right vagal fiber responses that were recorded directly related to patient symptom improvement. Increased vagal responses correlated with significant decreases in total symptom score (p < 0.05).

Comparison With Existing Method(s): We have developed transcutaneous recording of cervical vagal activity that is synchronized with GES in conscious human subjects, along with methods of discriminating the activity of different nerve fiber groups with respect to conduction speed and treatment response.

Conclusions: Cutaneous vagal CNAP analysis is a useful technique to unmask relationships among GES parameters, vagal recruitment, efficacy and side-effect management. Our results suggest that CNAP-guided GES optimization will provide the most benefit to patients with idiopathic and type 1 diabetic gastroparesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7881841PMC
http://dx.doi.org/10.1016/j.jneumeth.2020.108631DOI Listing

Publication Analysis

Top Keywords

gastric electrical
8
electrical stimulation
8
diabetic idiopathic
8
stimulus charge
8
charge pulse
8
emerging method
4
method noninvasively
4
noninvasively measure
4
measure identify
4
identify vagal
4

Similar Publications

The integrity of esophageal epithelial cells in patients with gastroesophageal reflux disease (GERD) or GERD-like symptoms is the first mechanism of protection to decrease the sensitivity to gastric reflux and heartburn symptoms. We investigated the protective effects of Poliprotect (PPRO), a CE-marked medical device, on esophageal epithelial integrity using in vitro and ex vivo models. In vitro, the protective effects of PPRO were tested on Caco-2 cells.

View Article and Find Full Text PDF

Efficient in-droplet cell culture and cytomechanics measurement for assessment of human cellular responses to alcohol.

Anal Chim Acta

February 2025

Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China. Electronic address:

Background: Excessive alcohol consumption poses a significant threat to human health, leading to cellular dehydration, degeneration, and necrosis. Alcohol-induced cellular damage is closely linked to alterations in cellular mechanical properties. However, characterizing these changes following alcohol-related injury remains challenging.

View Article and Find Full Text PDF

Portable devices for periodic monitoring of bioelectrical impedance along meridian pathways in healthy individuals.

Biomed Eng Online

January 2025

Department of Cardiovascular Surgery, Division of Cardiovascular Medicine, The Sixth Medical Center, Chinese PLA General Hospital, No.6 of Fucheng Road, Haidian District, Beijing, 100853, China.

Objective: This study aims to investigate the monthly variation patterns of bioelectrical impedance (BEI) along 24 meridian pathways in healthy individuals.

Methods: A cohort of 684 healthy middle-aged participants from North China was enrolled between July 1, 2017, and September 5, 2020. BEI measurements were consistently recorded along the 24 meridian pathways over the study period.

View Article and Find Full Text PDF

Decoding the mA epitranscriptomic landscape for biotechnological applications using a direct RNA sequencing approach.

Nat Commun

January 2025

National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.

Epitranscriptomic modifications, particularly N6-methyladenosine (mA), are crucial regulators of gene expression, influencing processes such as RNA stability, splicing, and translation. Traditional computational methods for detecting mA from Nanopore direct RNA sequencing (DRS) data are constrained by their reliance on experimentally validated labels, often resulting in the underestimation of modification sites. Here, we introduce pum6a, an innovative attention-based framework that integrates positive and unlabeled multi-instance learning (MIL) to address the challenges of incomplete labeling and missing read-level annotations.

View Article and Find Full Text PDF

Breath analysis is increasingly recognized as a powerful noninvasive diagnostic technique, and a plethora of exhaled volatile biomarkers have been associated with various diseases. However, traditional analytical methodologies are not amenable to high-throughput diagnostic applications at the point of need. An optical spectroscopic technique, surface-enhanced Raman spectroscopy (SERS), mostly used in the research setting for liquid sample analysis, has recently been applied to breath-based diagnostics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!