Aims: Mammalian target of rapamycin (mTOR) inhibitors used in drug-eluting stents (DES) to control restenosis have been found to delay endothelialization and increase incidence of late-stent thrombosis through mechanisms not completely understood. We revealed that mTOR inhibition (mTORi) upregulated the expression of cell growth suppressor IRF-1 in primary human arterial endothelial cells (HAEC). This study aimed to examine how mTOR-regulated IRF-1 expression contributes to the suppressive effect of mTORi on arterial endothelial proliferation.
Methods And Results: Western blotting, quantitative PCR, and a dual-luciferase reporter assay indicated that mTOR inhibitors rapamycin and torin 1 upregulated IRF-1 expression and increased its transcriptional activity. IRF-1 in turn contributed to the suppressive effect of mTORi by mediating HAEC apoptosis and cell cycle arrest in part through upregulation of caspase 1 and downregulation of cyclin D3, as revealed by CCK-8 assay, Annexin V binding assay, measurement of activated caspase 3, BrdU incorporation assay, and matrigel tube formation assay. In a mouse model of femoral artery wire injury, administration of rapamycin inhibited EC recovery, an effect alleviated by EC deficiency of IRF-1. Chromatin immunoprecipitation assay with HAEC and rescue expression of wild type or dominant-negative IRF-1 in EC isolated from Irf1 mice confirmed transcriptional regulation of IRF-1 on the expression of CASP1 and CCND3. Furthermore, mTORi activated multiple PKC members, among which PKCζ was responsible for the growth-inhibitory effect on HAEC. Activated PKCζ increased IRF1 transcription through JAK/STAT-1 and NF-κB signaling. Finally, overexpression of wild type or mutant raptor incapable of binding mTOR indicated that mTOR-free raptor contributed to PKCζ activation in mTOR-inhibited HAEC.
Conclusions: The study reveals an IRF-1-mediated mechanism that contributes to the suppressive effects of mTORi on HAEC proliferation. Further study may facilitate the development of effective strategies to reduce the side effects of DES used in coronary interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138750 | PMC |
http://dx.doi.org/10.1016/j.yjmcc.2020.02.006 | DOI Listing |
Inflammation
December 2024
Department of Biomedical Engineering, University of California Davis, Davis, CA, USA.
Mitochondrial dysfunction, which can be caused by metabolic stressors such as oxidized low-density lipoprotein (oxLDL), sensitizes the endothelium to pathological changes. The transcription factor interferon regulatory factor 1 (IRF-1) is a master regulator of inflammation, previously shown to promote oxLDL-induced inflammatory pyroptosis in human aortic endothelial cells (HAEC). However, a presumed role for IRF-1 in regulating the intrinsic apoptotic pathway in response to metabolic stress has not been demonstrated.
View Article and Find Full Text PDFBrain Behav Immun
January 2025
University of California, Los Angeles, Cousins Center for Psychoneuroimmunology, Los Angeles, CA, USA; University of California, Los Angeles, David Geffen School of Medicine, Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA, USA.
Altered activity of major immunoregulatory pathways has been reported in major depressive disorder (MDD) and is thought to underlie the elevations in circulating inflammatory mediators present in a subgroup of patients. However, the drivers of these changes in gene expression remain unclear. One potential modulator of immune function is viral infection.
View Article and Find Full Text PDFJ Exp Med
October 2024
Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Changes in mechanosensitive ion channels following radiation have seldom been linked to therapeutic sensitivity or specific factors involved in antitumor immunity. Here, in this study, we found that the mechanical force sensor, Piezo2, was significantly upregulated in tumor cells after radiation, and Piezo2 knockout in tumor cells enhanced tumor growth suppression by radiotherapy. Specifically, loss of Piezo2 in tumor cells induced their IL-15 expression via unleashing JAK2/STAT1/IRF-1 axis after radiation.
View Article and Find Full Text PDFAstrocytic interferon (IFN)γ signaling is associated with a reduction in neuroinflammation. We have previously shown that the benefits of astrocytic IFNγ arise from a variety of mechanisms; however, downstream effectors responsible for regulating this protection are unknown. We address this by identifying a specific transcription factor that may play a key role in modulating the consequences of IFNγ signaling.
View Article and Find Full Text PDFCell Death Discov
July 2024
Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany.
The regulation of T-cell fate is crucial for the balance between infection control and tolerance. Calcium (Ca) and zinc (Zn) signals are both induced after T-cell stimulation, but their specific roles in the fate of activation and differentiation remain to be elucidated. Are Zn- and Ca signals responsible for different aspects in T-cell activation and differentiation and do they act in concert or in opposition? It is crucial to understand the interplay of the intracellular signals to influence the fate of T cells in diseases with undesirable T-cell activities or in Zn-deficient patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!