Synthetic biology circuits are often constructed with multiple gene expression units assembled in close proximity, and they can be used to perform complex functions in embryonic stem cells (ESCs). However, mutual interference between transcriptional units has not been well studied in mouse ESCs. To assess the efficiency of insulators at suppressing promoter interference in mouse ESCs, we used an evaluation scheme in which a tunable tetracycline response element promoter is connected to a constant Nanog promoter. The chicken hypersensitive site 4 (cHS4) insulator, widely used both for enhancer blocking and for barrier insulation in vitro and in vivo, was positioned between the two expression units for assessment. By inserting the cassette into various loci of the mouse ESC genome with PiggyBac transposon, we were able to quantitatively examine the protective effect of cHS4 by gradually increasing the transcriptional activity of the tetracycline response element promoter with doxycycline and then measuring the transcriptional activity of the Nanog promoter. Our results indicate that the cHS4 insulator has minimal insulating effects on promoter interference in mouse ESCs. Further studies show that the cHS4 insulation effect may be promoter specific and related to interaction with CCCTC-binding factor-mediated loop formation. In addition, we also compared DNA transposition and transgene expression with or without the cHS4 insulator using well-established ESC reporters. The results indicate that cHS4 has no apparent effects on DNA transposition and transgene expression levels, but exerts modest protective effects on long-term transgene silencing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7137798PMC
http://dx.doi.org/10.1002/2211-5463.12818DOI Listing

Publication Analysis

Top Keywords

chs4 insulator
16
mouse escs
12
embryonic stem
8
stem cells
8
expression units
8
promoter interference
8
interference mouse
8
tetracycline response
8
response element
8
element promoter
8

Similar Publications

Background: LentiGlobin BB305 is a self-inactivating lentiviral vector carrying a human β-globin expressing cassette for treating β-thalassemia. Initially, a 2 × 250 bp chicken Locus Control Region fragment of cHS4, functioning as an insulator, was placed at its ΔU3, which was removed after the first clinical trial led by a French team to avoid abnormal splicing, etc. This action could potentially lead to an increasing risk of the transcriptional read-through rate driven by the β-globin promoter to a significant level, posing a biosafety risk in clinical trials.

View Article and Find Full Text PDF

Chromatin boundary elements contribute to the partitioning of mammalian genomes into topological domains to regulate gene expression. Certain boundary elements are adopted as DNA insulators for safe and stable transgene expression in mammalian cells. These elements, however, are ill-defined and less characterized in the non-coding genome, partially due to the lack of a platform to readily evaluate boundary-associated activities of putative DNA sequences.

View Article and Find Full Text PDF

In mammalian cells genes that are in close proximity can be transcriptionally coupled: silencing or activating one gene can affect its neighbors. Understanding these dynamics is important for natural processes, such as heterochromatin spreading during development and aging, and when designing synthetic gene regulation circuits. Here, we systematically dissect this process in single cells by recruiting and releasing repressive chromatin regulators at dual-gene synthetic reporters, and measuring how fast gene silencing and reactivation spread as a function of intergenic distance and configuration of insulator elements.

View Article and Find Full Text PDF

Synthetic biology circuits are often constructed with multiple gene expression units assembled in close proximity, and they can be used to perform complex functions in embryonic stem cells (ESCs). However, mutual interference between transcriptional units has not been well studied in mouse ESCs. To assess the efficiency of insulators at suppressing promoter interference in mouse ESCs, we used an evaluation scheme in which a tunable tetracycline response element promoter is connected to a constant Nanog promoter.

View Article and Find Full Text PDF

Differential expression of transgenes in transgenic animals is one of the main drawbacks of pronuclear injection. To overwhelm this issue, the genetic constructs are equipped with insulators. In this study, the consensus of exerting chicken hypersensitive site-4 () insulator was examined on the shield of phosphoglycerate kinase-1 (-) promoter from the surrounding chromatin in transgenic mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!