A library of pyrazole-thiazolidinone conjugates was synthesized using a molecular hybridization approach through a Vilsmeier-Haack reaction. The compounds were tested for anti-microbial activity against two Gram-positive bacteria (Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) and four Gram-negative bacteria (Escherichia coli, Salmonella typhimurium, Klebsiella pneumonia and Pseudomonas aeruginosa). Among the compounds tested, 3-((2,4-dichlorophenyl)-1-(2,4-dinitrophenyl)-1H-pyrazol-yl)methylene)hydrazinecarbothioamide (3a) and 2-((3-(2-chlorophenyl)-1-(2,4 dinitrophenyl)-1H-pyrazol-4-yl)methyleneamino)thiazolidin-4-one (4b) emerged as the most potent anti-microbial compounds with minimum bactericidal concentrations of < 0.2 µM against MRSA and S. aureus. Structure-activity relationship analysis further revealed that the presence of 2,4-dichloro moiety surprisingly influenced the activity of the compounds. Molecular docking studies of the compounds into the crystal structure of topoisomerase II and topoisomerase IV suggest that compounds 3a and 4b preferably interact with the targets through hydrogen bonding.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11030-020-10046-wDOI Listing

Publication Analysis

Top Keywords

pyrazole-thiazolidinone conjugates
8
compounds tested
8
staphylococcus aureus
8
antibacterial evaluation
4
evaluation molecular
4
molecular docking
4
docking studies
4
studies pyrazole-thiosemicarbazones
4
pyrazole-thiosemicarbazones pyrazole-thiazolidinone
4
conjugates library
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!