Spike conduction velocity characteristically differs between myelinated and unmyelinated axons. Here we test whether spikes of myelinated and unmyelinated paths differ in other respects by measuring rat retinal ganglion cell (RGC) spike duration in the intraretinal, unmyelinated nerve fiber layer and the extraretinal, myelinated optic nerve and optic chiasm. We find that rapid spike firing and illumination broaden spikes in intraretinal axons but not in extraretinal axons. RGC axons thus initiate spikes intraretinally and normalize spike duration extraretinally. Additionally, we analyze spikes that were recorded in a previous study of rhesus macaque retinogeniculate transmission and find that rapid spike firing does not broaden spikes in optic tract. The spike normalization we find reduces the number of spike properties that can change during RGC light responses. However, this is not because identical spikes fire in all axons. Instead, our recordings show that different subtypes of RGC generate axonal spikes of different durations and that the differences resemble spike duration increases that alter neurotransmitter release from other neurons. Moreover, previous studies have shown that RGC spikes of shorter duration can fire at higher maximum frequencies. These properties should facilitate signal transfer by different mechanisms at RGC synapses onto subcortical target neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7110362PMC
http://dx.doi.org/10.1523/ENEURO.0504-19.2020DOI Listing

Publication Analysis

Top Keywords

spike duration
12
spike normalization
8
retinal ganglion
8
ganglion cell
8
spike
8
myelinated unmyelinated
8
spikes
8
find rapid
8
rapid spike
8
spike firing
8

Similar Publications

Excitation-inhibition (E/I) imbalance is theorized as a key mechanism in the pathophysiology of epilepsy, with ample research focusing on elucidating its cellular manifestations. However, few studies investigate E/I imbalance at the macroscale, whole-brain level, and its microcircuit-level mechanisms and clinical significance remain incompletely understood. Here, the Hurst exponent, an index of the E/I ratio, is computed from resting-state fMRI time series, and microcircuit parameters are simulated using biophysical models.

View Article and Find Full Text PDF

Advances in the semiconductor industry have been limited owing to the constraints imposed by silicon-based CMOS technology; hence, innovative device design approaches are necessary. This study focuses on "more than Moore" approaches, specifically in neuromorphic computing. Although MoS devices have attracted attention as neuromorphic computing candidates, their performances have been limited due to environment-induced perturbations to carrier dynamics and the formation of defect states.

View Article and Find Full Text PDF

At cellular and circuit levels, drug addiction is considered a dysregulation of synaptic plasticity. In addition, dysfunction of the glutamate transporter 1 (GLT-1) in the nucleus accumbens (NAc) has also been proposed as a mechanism underlying drug addiction. However, the cellular and synaptic impact of GLT-1 alterations in the NAc remain unclear.

View Article and Find Full Text PDF

Effect of electrochemical topology on detection sensitivity in MEA assay for drug-induced cardiotoxicity screening.

Biosens Bioelectron

December 2024

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, United States; Department of Medicine, Johns Hopkins University, Baltimore, MD, 21205, United States; Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD, 21218, United States; Center for Microphysiological Systems, Johns Hopkins University, Baltimore, MD, 21205, United States. Electronic address:

Cardiotoxicity remains a major challenge in drug development, accounting for 45% of medication withdrawals due to cardiac ischemia and arrhythmogenicity. To overcome the limitations of traditional multielectrode array (MEA)-based cardiotoxicity assays, we developed a Nafion-coated NanoMEA platform with decoupled reference electrodes, offering enhanced sensitivity for electrophysiological measurements. The 'Decoupled' configuration significantly reduced polarization resistance (Rp) from 12.

View Article and Find Full Text PDF

Colchicine-Induced Tetraploidy in Protocorms of Lodd. ex Lindl. and Paxton. and Its Identification.

Plants (Basel)

December 2024

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

(Orchidaceae) boasts high ornamental value due to its pleasant aroma, foxtail spike, and elegant floral morphology. Inducing to become tetraploid enhances horticultural traits and facilitates fertile intergeneric hybrids through crosses with other market-available tetraploid species. The experimental design involved the application of colchicine at varying concentrations-0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!