Effects of Efferent Activity on Hair Bundle Mechanics.

J Neurosci

Department of Physics and Astronomy, and

Published: March 2020

Hair cells in both the auditory and vestibular systems receive efferent innervation. A number of prior studies have indicated that efferent regulation serves to diminish the overall sensitivity of the auditory system. The efferent pathway is believed to affect the sensitivity and frequency selectivity of the hair cell by modulating its membrane potential. However, its effect on the mechanical response of the hair cell has not been established. We explored how stimulation of the efferent neurons affects the mechanical responsiveness of an individual hair bundle. We tested this effect on preparations of hair cells in the sacculi of American bullfrogs of both genders. Efferent stimulation routinely resulted in an immediate increase of the frequency of hair bundle spontaneous oscillations for the duration of the stimulus. Enlarging the stimulus amplitude and pulse length, or conversely, decreasing the interpulse interval led to oscillation suppression. Additionally, we tested the effects of efference on the hair bundle response to mechanical stimulation. The receptive field maps of hair cells undergoing efferent actuation demonstrated an overall desensitization with respect to those of unstimulated cells. The efferent system is an important aide for the performance of the auditory system. It has been seen to contribute to sound detection and localization, ototoxicity prevention, and speech comprehension. Although measurements have demonstrated that efference suppresses basilar membrane movement, there is still much unknown about how efferent activity affects hearing mechanics. Here, we explore the mechanical basis for the efferent system's capabilities at the level of the hair bundle. We present optical recordings, receptive field maps, and sensitivity curves that show a hair bundle is desensitized by efferent stimulation. This supports the hypothesis that efferent regulation may be a biological control parameter for tuning the hair bundle's mechanical sensitivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7083535PMC
http://dx.doi.org/10.1523/JNEUROSCI.1312-19.2020DOI Listing

Publication Analysis

Top Keywords

hair bundle
24
hair
12
hair cells
12
efferent
11
efferent activity
8
efferent regulation
8
auditory system
8
hair cell
8
efferent stimulation
8
receptive field
8

Similar Publications

Cochlear Organ Dissection, Immunostaining, and Confocal Imaging in Mice.

Bio Protoc

January 2025

ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.

The organ of Corti, located in the inner ear, is the primary organ responsible for animal hearing. Each hair cell has a V-shaped or U-shaped hair bundle composed of actin-filled stereocilia and a kinocilium supported by true transport microtubules. Damage to these structures due to noise exposure, drug toxicity, aging, or environmental factors can lead to hearing loss and other disorders.

View Article and Find Full Text PDF

Assembly of actin-based stereocilia is critical for cochlear hair cells to detect sound. To tune their mechanosensivity, stereocilia form bundles composed of graded rows of ascending height, necessitating the precise control of actin polymerization. Myosin 15 (MYO15A) drives hair bundle development by delivering critical proteins to growing stereocilia that regulate actin polymerization via an unknown mechanism.

View Article and Find Full Text PDF

We developed an isolated auditory papilla of the crested gecko to record from the hair cells and explore the origins of frequency tuning. Low-frequency cells displayed electrical tuning, dependent on Ca-activated K channels; high-frequency cells, overlain with sallets, showed a variation in hair bundle stiffness which when combined with sallet mass could provide a mechanical resonance of 1 to 6 kHz. Sinusoidal electrical currents injected extracellularly evoked hair bundle oscillations at twice the stimulation frequency, consistent with fast electromechanical responses from hair bundles of two opposing orientations, as occur in the sallets.

View Article and Find Full Text PDF

Hearing loss is highly related to acoustic injuries and mechanical damage of ear tissues. The mechanical responses of ear tissues are difficult to measure experimentally, especially cochlear hair cells within the organ of Corti (OC) at microscale. Finite element (FE) modeling has become an important tool for simulating acoustic wave transmission and studying cochlear mechanics.

View Article and Find Full Text PDF

Auditory hair cells form precise and sensitive staircase-like actin protrusions known as stereocilia. These specialized microvilli detect deflections induced by sound through the activation of mechano-electrical transduction (MET) channels located at their tips. At rest, a small MET channel current results in a constant calcium influx which regulates the morphology of the actin cytoskeleton in the shorter 'transducing' stereocilia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!