Pancreatic ductal adenocarcinoma (PDAC) is highly resistant to radiotherapy, chemotherapy, or a combination of these modalities, and surgery remains the only curative intervention for localized disease. Although cancer-associated fibroblasts (CAF) are abundant in PDAC tumors, the effects of radiotherapy on CAFs and the response of PDAC cells to radiotherapy are unknown. Using patient samples and orthotopic PDAC biological models, we showed that radiotherapy increased inducible nitric oxide synthase (iNOS) in the tumor tissues. Mechanistic studies showed that, although undetectable in radiotherapy-activated tumor cells, iNOS expression and nitric oxide (NO) secretion were significantly increased in CAFs secretome following radiotherapy. Culture of PDAC cells with conditioned media from radiotherapy-activated CAFs increased iNOS/NO signaling in tumor cells through NF-κB, which, in turn, elevated the release of inflammatory cytokines by the tumor cells. Increased NO after radiotherapy in PDAC contributed to an acidic microenvironment that was detectable using the radiolabeled pH (low) insertion peptide (pHLIP). In murine orthotopic PDAC models, pancreatic tumor growth was delayed when iNOS inhibition was combined with radiotherapy. These data show the important role that iNOS/NO signaling plays in the effectiveness of radiotherapy to treat PDAC tumors. SIGNIFICANCE: A radiolabeled pH-targeted peptide can be used as a PET imaging tool to assess therapy response within PDAC and blocking iNOS/NO signaling may improve radiotherapy outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7165066PMC
http://dx.doi.org/10.1158/0008-5472.CAN-19-2991DOI Listing

Publication Analysis

Top Keywords

tumor cells
12
inos/no signaling
12
radiotherapy
10
pdac
9
cells radiotherapy
8
pdac tumors
8
response pdac
8
pdac cells
8
orthotopic pdac
8
nitric oxide
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!