Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Discrete manufacturing systems are characterized by dynamics and uncertainty of operations and behavior due to exceptions in production-logistics synchronization. To deal with this problem, a self-adaptive collaborative control (SCC) mode is proposed for smart production-logistics systems to enhance the capability of intelligence, flexibility, and resilience. By leveraging cyber-physical systems (CPSs) and industrial Internet of Things (IIoT), real-time status data are collected and processed to perform decision making and optimization. Hybrid automata is used to model the dynamic behavior of physical manufacturing resources, such as machines and vehicles in shop floors. Three levels of collaborative control granularity, including nodal SCC, local SCC, and global SCC, are introduced to address different degrees of exceptions. Collaborative optimization problems are solved using analytical target cascading (ATC). A proof of concept simulation based on a Chinese aero-engine manufacturer validates the applicability and efficiency of the proposed method, showing reductions in waiting time, makespan, and energy consumption with reasonable computational time. This article potentially enables manufacturers to implement CPS and IIoT in manufacturing environments and build up smart, flexible, and resilient production-logistics systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2020.2964301 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!