In this work, a novel CdS-SnS-SnS/rGO photocatalyst with two tin valence states (Ⅱ and IV) was successfully synthesized by a one-pot solvothermal method. For comparison, CdS-SnS/rGO (GCS2) with tin in only the IV valence state was made by the same method. Based on a series of characterizations, CdS, SnS and SnS were shown to be successfully loaded onto the rGO surface. The introduction of rGO may increase charge carrier separation. The degradation efficiency increased gradually with increasing rGO loading content, and the optimum photocatalytic activity was observed at 6.0 wt% rGO loading content (GCS1), which achieved the efficient removal (84.46%) of ibuprofen over 60 min. Compared with GCS2, the CdS-SnS-SnS/rGO composite exhibited significantly improved photocatalytic performance, which can be ascribed to the formation of a double heterostructure. rGO worked as a transfer mediator to transfer electrons from the conduction band (CB) of SnS to the CB of SnS at the heterointerface, which then flowed to the CB of CdS because of another heterojunction, further enhancing the separation efficiency of photogenerated carriers. Therefore, this study highlights a novel double heterojunction system with a facial preparation method, visible light response and good recyclability, which is beneficial for environmental remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2019.121016 | DOI Listing |
Nanomaterials (Basel)
January 2025
School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
This study optimizes the CuO/GaO heterojunction diodes (HJDs) by tailoring the structural parameters of CuO layers. The hole concentration in the sputtered CuO was precisely controlled by adjusting the Ar/O gas ratio. Experimental investigations and TCAD simulations were employed to systematically evaluate the impact of the CuO layer dimension and hole concentration on the electrical performance of HJDs.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
School of Chemical Sciences & Technology, School of Materials and Energy, Yunnan Provincial Center of Technology Innovation for New Materials and Equipment in Water Pollution Control, Institute of International Rivers and Eco-Security, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming 650091, China.
Synthesis of the photocatalysts with near-infrared light response usually involves upconversion materials or plasmon-assisted noble metals. Herein, NiTiO/TiO was synthesized by using waste tobacco stem-silks as biotemplates and tetra-tert-butyl orthotitanate and nickel nitrate as precursors in a one-pot procedure. NiTiO(1.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, PR China.
Currently, to deal with the increasingly severe energy crisis and environmental consequences, photocatalytic technology is considered as a promise solution, and the construction of Z-scheme heterostructures are important strategies to maximize the utilization of solar energy and improve photocatalytic performance. Herein, a novel full spectrum-responsive Z-scheme Bi-BiVO-BiTiO heterojunction was constructed by a facile hydrothermal method without any templates or surfactants. A series of detailed analyses revealed that the novel Bi-BiVO-BiTiO heterojunction catalyst were prepared successfully.
View Article and Find Full Text PDFSci Rep
January 2025
College of Chemistry and Chemical Engineering, Tarim University, Alar, 843300, Xinjiang, China.
We have developed a novel S-scheme mechanism to expand the photoresponse range of BiSiO. This study reports the successful creation of a CN/BS heterojunction photocatalyst, which is composed of g-CN and BiSiO. The synthesis was achieved through a simple two-step procedure, involving hydrothermal treatment and subsequent calcination.
View Article and Find Full Text PDFDalton Trans
January 2025
National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
The unique benefits of nickel-aluminium layered double hydroxide (Ni-Al LDH)-based heterojunctions, including large surface area, tunable bandgap and morphology, abundant reaction sites, and high activity, selectivity, and photostability, make them extremely promising for photocatalytic applications. Given the importance and benefits of Ni-Al LDH-based heterojunctions in photocatalysis, it is necessary to provide a summary of Ni-Al LDH-based heterojunctions for photocatalytic applications. Hence, in this review, we thoroughly described the material design for Ni-Al LDH-based heterojunctions, along with their recent developments in various photocatalytic applications, , H evolution, CO reduction, and pollutant removal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!