Age-associated changes in walking parameters are relevant to recognize functional capacity and physical performance. However, the sensible nuances of slightly different gait patterns are hardly noticeable by inexperienced observers. Due to the complexity of this evaluation, we aimed at verifying the efficiency of applied hybrid-adaptive algorithms to cluster groups with similar gait patterns. Based on self-organizing maps (SOM), k-means clustering (KM), and fuzzy c-means (FCM), we compared the hybrid algorithms to a conventional FCM approach to cluster accordingly age-related groups. Additionally, we performed a relevance analysis to identify the principal gait characteristics. Our experiments, based on inertial-sensors data, comprised a sample of 180 healthy subjects, divided into age-related groups. The outcomes suggest that our methods outperformed the FCM algorithm, demonstrating a high accuracy (88%) and consistent sensitivity also to distinguish groups that presented a significant difference (p < .05) only in one of the six observed gait features. The applied algorithms showed a compatible performance, but the SOM + KM required less computation cost and, therefore, was more efficient. Furthermore, the results indicate the overall importance of cadence, as a measurement of physical performance, especially when clustering subjects by their age. Such output provides valuable information to healthcare professionals, concerning the subject's physical performance related to his age, supporting and guiding the physical evaluation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.medengphy.2020.02.001 | DOI Listing |
HRB Open Res
January 2025
School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.
Background: Delirium and cognitive impairment are common in hip fracture populations and are associated with significant adverse patient outcomes. National hip fracture registries facilitate improvements in patient outcomes and care quality, such as reduced mortality and the development of specialist multidisciplinary services. However, there is substantial variation in the data collected and reported in relation to delirium and cognition, which impedes international comparison and may reduce quality of care.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.
Background: Type 2 Diabetes Mellitus (T2DM) represents a major global health challenge, marked by chronic hyperglycemia, insulin resistance, and immune system dysfunction. Immune cells, including T cells and monocytes, play a pivotal role in driving systemic inflammation in T2DM; however, the underlying single-cell mechanisms remain inadequately defined.
Methods: Single-cell RNA sequencing of peripheral blood mononuclear cells (PBMCs) from 37 patients with T2DM and 11 healthy controls (HC) was conducted.
BMC Pharmacol Toxicol
January 2025
Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264100, PR China.
Background: Alzheimer's disease (AD), a hallmark of age-related cognitive decline, is defined by its unique neuropathology. Metabolic dysregulation, particularly involving glutamine (Gln) metabolism, has emerged as a critical but underexplored aspect of AD pathophysiology, representing a significant gap in our current understanding of the disease.
Methods: To investigate the involvement of GlnMgs in AD, we conducted a comprehensive bioinformatic analysis.
Geroscience
January 2025
Department of Surgery, Immanuel Clinic Rüdersdorf, University Clinic of Brandenburg Medical School, Berlin, Germany.
Aging is a multi-organ disease, yet the traditional approach has been to study each organ in isolation. Such organ-specific studies have provided invaluable information regarding its pathomechanisms. However, an overall picture of the whole-body network (WBN) during aging is still incomplete.
View Article and Find Full Text PDFJ Neurosci Methods
January 2025
School of Electrical and Computer Engineering, Gallogly College of Engineering, University of Oklahoma, Norman, OK 73019, USA.
Background: Recent advances in multimodal signal analysis enable the identification of subtle drug-induced anomalies in sleep that traditional methods often miss.
New Method: We develop and introduce the Dynamic Representation of Multimodal Activity and Markov States (DREAMS) framework, which embeds explainable artificial intelligence (XAI) techniques to model hidden state transitions during sleep using tensorized EEG, EMG, and EOG signals from 22 subjects across three age groups (18-29, 30-49, and 50-66 years). By combining Tucker decomposition with probabilistic Hidden Markov Modeling, we quantified age-specific, temazepam-induced hidden states and significant differences in transition probabilities.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!