Background: The aim of this study was to investigate the expression of the nuclear receptor PPARγ, together with that of the cyclooxygenases Cox-1 and Cox-2, in breast cancer (BC) tissues and to correlate the data with several clinicobiological parameters including patient survival.

Methods: In a well characterized cohort of 308 primary BC, PPARγ, Cox-1 and Cox-2 cytoplasmic and nuclear expression were evaluated by immunohistochemistry. Correlations with clinicopathological and aggressiveness features were analyzed, as well as survival using Kaplan-Meier analysis.

Results: PPARγ was expressed in almost 58% of the samples with a predominant cytoplasmic location. Cox-1 and Cox-2 were exclusively cytoplasmic. Cytoplasmic PPARγ was inversely correlated with nuclear PPARγ and ER expression, but positively with Cox-1, Cox-2, and other high-risk markers of BC, e.g. HER2, CD133, and N-cadherin. Overall survival analysis demonstrated that cytoplasmic PPARγ had a strong correlation with poor survival in the whole cohort, and even stronger in the subgroup of patients with no Cox-1 expression where cytoplasmic PPARγ expression appeared as an independent marker of poor prognosis. In support of this cross-talk between PPARγ and Cox-1, we found that Cox-1 became a marker of good prognosis only when cytoplasmic PPARγ was expressed at high levels.

Conclusion: Altogether, these data suggest that the relative expression of cytoplasmic PPARγ and Cox-1 may play an important role in oncogenesis and could be defined as a potential prognosis marker to identify specific high risk BC subgroups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035771PMC
http://dx.doi.org/10.1186/s12967-020-02271-6DOI Listing

Publication Analysis

Top Keywords

cytoplasmic pparγ
24
cox-1 cox-2
16
pparγ cox-1
12
pparγ
10
cytoplasmic
9
cox-1
9
marker poor
8
poor prognosis
8
patients cox-1
8
pparγ expressed
8

Similar Publications

Telomere attrition is a hallmark of biological aging, contributing to cellular replicative senescence. However, few studies have examined the determinants of telomere attrition in vivo in humans. Mitochondrial Health Index (MHI), a composite marker integrating mitochondrial energy-transformation capacity and content, may be one important mediator of telomere attrition, as it could impact telomerase activity, a direct regulator of telomere maintenance.

View Article and Find Full Text PDF

Refining minimal engineered receptors for specific activation of on-target signaling molecules.

Sci Rep

December 2024

Laboratory of Cell Vaccine, Microbial Research Center for Health and Medicine (MRCHM), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki-Shi, Osaka, 567-0085, Japan.

Since designer cells are attracting much attention as a new modality in gene and cell therapy, it would be advantageous to develop synthetic receptors that recognize artificial ligands and activate solely signaling molecules of interest. In this study, we refined the construction of our previously developed minimal engineered receptors (MERs) to avoid off-target activation of STAT5 while maintaining on-target activation of signaling molecules corresponding to tyrosine motifs. Among the myristoylated, cytoplasmic, and transmembrane types of MERs, the cytoplasmic type had the highest signaling efficiency, although there was off-target activation of STAT5 upon ligand stimulation.

View Article and Find Full Text PDF

NS1 binding protein regulates stress granule dynamics and clearance by inhibiting p62 ubiquitination.

Nat Commun

December 2024

Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea.

The NS1 binding protein, known for interacting with the influenza A virus protein, is involved in RNA processing, cancer, and nerve cell growth regulation. However, its role in stress response independent of viral infections remains unclear. This study investigates NS1 binding protein's function in regulating stress granules during oxidative stress through interactions with GABARAP subfamily proteins.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is an aggressive disease with a high relapse rate. In this study, we map the metabolic profile of CD34(CD38) AML cells and the extracellular vesicle signatures in circulation from AML patients at diagnosis. CD34 AML cells display high antioxidant glutathione levels and enhanced mitochondrial functionality, both associated with poor clinical outcomes.

View Article and Find Full Text PDF

Mid-infrared photoacoustic microscopy can capture biochemical information without staining. However, the long mid-infrared optical wavelengths make the spatial resolution of photoacoustic microscopy significantly poorer than that of conventional confocal fluorescence microscopy. Here, we demonstrate an explainable deep learning-based unsupervised inter-domain transformation of low-resolution unlabeled mid-infrared photoacoustic microscopy images into confocal-like virtually fluorescence-stained high-resolution images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!