Advancements in nucleic acid sequencing technology combined with an unprecedented availability of metadata have revealed that 45% of the human genome constituted by transposable elements (TEs) is not only transcriptionally active but also physiologically necessary. Dysregulation of TEs, including human retroviral endogenous sequences (HERVs) has been shown to associate with several neurologic and autoimmune diseases, including Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). However, no study has yet addressed whether abnormal expression of these sequences correlates with fibromyalgia (FM), a disease frequently comorbid with ME/CFS. The work presented here shows, for the first time, that, in fact, HERVs of the H, K and W types are overexpressed in immune cells of FM patients with or without comorbid ME/CFS. Patients with increased HERV expression (N = 14) presented increased levels of interferon (INF-β and INF-γ) but unchanged levels of TNF-α. The findings reported in this study could explain the flu-like symptoms FM patients present with in clinical practice, in the absence of concomitant infections. Future work aimed at identifying specific genomic loci differentially affected in FM and/or ME/CFS is warranted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072917PMC
http://dx.doi.org/10.3390/ijms21041366DOI Listing

Publication Analysis

Top Keywords

transposable elements
8
immune cells
8
comorbid me/cfs
8
activation transposable
4
elements immune
4
cells fibromyalgia
4
patients
4
fibromyalgia patients
4
patients advancements
4
advancements nucleic
4

Similar Publications

Background: Myelodysplastic neoplasms (MDS) are heterogeneous hematopoietic disorders characterized by ineffective hematopoiesis and genome instability. Mobilization of transposable elements (TEs) is an important source of genome instability leading to oncogenesis, whereas small PIWI-interacting RNAs (piRNAs) act as cellular suppressors of TEs. However, the roles of TEs and piRNAs in MDS remain unclear.

View Article and Find Full Text PDF

Transposable elements shape the landscape of heterozygous structural variation in a bird genome.

Zool Res

January 2025

Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China. E-mail:

Avian genomes exhibit compact organization and remarkable chromosomal stability. However, the extent and mechanisms by which structural variation in avian genomes differ from those in other vertebrate lineages are poorly explored. This study generated a diploid genome assembly for the golden pheasant ( ), a species distinguished by the vibrant plumage of males.

View Article and Find Full Text PDF

Nucleotide-binding domain leucine-rich repeat (NLR) proteins are a key component of the plant innate immune system. In plant genomes, NLRs exhibit considerable presence/absence variation and sequence diversity. Recent advances in sequencing technologies have made the generation of high-quality novel plant genome assemblies considerably more straightforward.

View Article and Find Full Text PDF

Grapevine cell response to carbon deficiency requires transcriptome and methylome reprogramming.

Hortic Res

January 2025

Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, France.

Sugar limitation has dramatic consequences on plant cells, which include cell metabolism and transcriptional reprogramming, and the recycling of cellular components to maintain fundamental cell functions. There is however no description of the contribution of epigenetic regulations to the adaptation of plant cells to limited carbon availability. We investigated this question using nonphotosynthetic grapevine cells (, cv Cabernet Sauvignon) cultured with contrasted glucose concentrations.

View Article and Find Full Text PDF

Miniature-inverted-repeat transposable elements contribute to phenotypic variation regulation of rice induced by space environment.

Front Plant Sci

January 2025

Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China.

Introduction: Rice samples exposed to the space environment have generated diverse phenotypic variations. Miniature-inverted-repeat transposable elements (MITEs), often found adjacent to genes, play a significant role in regulating the plant genome. Herein, the contribution of MITEs in regulating space-mutagenic phenotypes was explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!