Plant Growth Inhibitory Activities and Volatile Active Compounds of 53 Spices and Herbs.

Plants (Basel)

Department of Biological Production Science, United Graduate School of Agriculture, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.

Published: February 2020

The inhibitory activities of the leachates and volatiles from 53 plant species (spices and herbs) were evaluated against lettuce ( "Great Lakes 366") seedling growth using the sandwich and dish pack methods, respectively. With the sandwich method, parsley () showed the strongest inhibitory effect on lettuce radicle growth (77%), followed by tarragon () (72%). However, caraway (), dill () (seed), laurel (), rosemary (), and sage () were the most inhibitory species (100% inhibition of lettuce radicle and hypocotyl growth inhibition at all distance wells) in the dish pack method. Cardamom () and thyme () also showed strong inhibitory activity (100% for radicle and hypocotyl growth inhibition at all 41 and 58 mm distance wells). The headspace sampling and gas chromatography-mass spectrometry (GC-MS) analysis identified the main inhibitory active compounds as carvone in caraway and dill (seeds), 1,8-cineole in laurel and cardamom, and borneol in thyme. Both camphor and 1,8-cineole were detected in rosemary and sage, and the total activity evaluation showed that camphor was the major inhibitory compound in rosemary, although both compounds played equal roles in sage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7076484PMC
http://dx.doi.org/10.3390/plants9020264DOI Listing

Publication Analysis

Top Keywords

inhibitory activities
8
active compounds
8
spices herbs
8
dish pack
8
lettuce radicle
8
caraway dill
8
rosemary sage
8
radicle hypocotyl
8
hypocotyl growth
8
growth inhibition
8

Similar Publications

Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.

Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.

View Article and Find Full Text PDF

Tryptophan catabolism is a central pathway in many cancers, serving to sustain an immunosuppressive microenvironment. The key enzymes involved in this tryptophan metabolism such as indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are reported as promising novel targets in cancer immunotherapy. IDO1 and TDO overexpression in TNBC cells promote resistance to cell death, proliferation, invasion, and metastasis.

View Article and Find Full Text PDF

The development of resistance to traditional antifungal therapies has necessitated the exploration of alternative treatment strategies to effectively manage fungal infections, particularly those induced by (). This research investigates the possibility of integrating silver nanoparticles (AgNPs) with Terbinafine to improve antifungal effectiveness. Terbinafine, while potent, faces challenges with specific fungal strains, highlighting the need for strategies to enhance its treatment efficacy.

View Article and Find Full Text PDF

Arginase (ARG) is a binuclear manganese-containing metalloenzyme that can convert L-arginine to L-ornithine and urea and plays a key role in the urea cycle. It also mediates different cellular functions and processes such as proliferation, senescence, apoptosis, autophagy, and inflammatory responses in various cell types. In mammals, there are two isoenzymes, ARG-1 and ARG-2; they are functionally similar, but their coding genes, tissue distribution, subcellular localization, and molecular regulation are distinct.

View Article and Find Full Text PDF

Curcumin-Loaded Lipid Nanoparticles: A Promising Antimicrobial Strategy Against in Endodontic Infections.

Pharmaceutics

January 2025

Laboratório Associado para a Química Verde-Rede de Química e Tecnologia (LAQV, REQUIMTE), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.

This study aims to evaluate the efficacy of curcumin (CUR), a natural polyphenol with potent antimicrobial and anti-inflammatory properties, when formulated as solid lipid nanoparticles (CUR-loaded SLN) against . Solid lipid nanoparticles (SLNs) were prepared as a carrier for CUR, which significantly improved its solubility. SLNs made with cetyl palmitate and Tween 80 were obtained via the hot ultrasonication method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!