In this issue of Cell Chemical Biology, Murithi et al. (2020) integrate stage-specific phenotypic screening and metabolomics to uncover modes of action of antimalarials. This work highlights compounds with potent activity against all asexual blood stages, as well as compounds with unique stage specificity and metabolic profiles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chembiol.2020.01.013 | DOI Listing |
J Adv Res
January 2025
Department of Chinese Medicine Authentication, College of Pharmacy, Naval Medical University, No.325 Guohe Road, Shanghai 200433, China; Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University, No.1279 Sanmen Road, Shanghai 200434, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, No.325 Guohe Road, Shanghai 200433, China. Electronic address:
Background: Plants produce abundant natural products, among which are species-specific and diversified secondary metabolites that are essential for growth and development, as well as adaptation to adversity and ecology. Moreover, these secondary metabolites are extensively utilized in pharmaceuticals, fragrances, industrial materials, and more. WRKY transcription factors (TFs), as a family of TFs unique to plants, have significant functions in many plant life activities.
View Article and Find Full Text PDFFront Immunol
January 2025
Amgen Research, Amgen Inc., South San Francisco, CA, United States.
Tolerogenic vaccines represent a therapeutic approach to induce antigen-specific immune tolerance to disease-relevant antigens. As general immunosuppression comes with significant side effects, including heightened risk of infections and reduced anti-tumor immunity, antigen-specific tolerance by vaccination would be game changing in the treatment of immunological conditions such as autoimmunity, anti-drug antibody responses, transplantation rejection, and hypersensitivity. Tolerogenic vaccines induce antigen-specific tolerance by promoting tolerogenic antigen presenting cells, regulatory T cells, and regulatory B cells, or by suppressing or depleting antigen-specific pathogenic T and B cells.
View Article and Find Full Text PDFHeliyon
December 2024
Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), 38010, Santa Cruz de Tenerife, Spain.
The naphthoquinone moiety is commonly found in numerous natural cytotoxic compounds with diverse and pleiotropic modes of action (MOAs). The moiety can exist as a standalone pharmacophore or combined with other pharmacophores to enrich their MOAs. Here, we report that the synthetic fusion of naphthoquinones and oxazepines provides potent cytotoxic compounds with diverse MOAs.
View Article and Find Full Text PDFEnviron Mol Mutagen
January 2025
Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
Gene expression biomarkers have the potential to identify genotoxic and non-genotoxic carcinogens, providing opportunities for integrated testing and reducing animal use. In August 2022, an International Workshops on Genotoxicity Testing (IWGT) workshop was held to critically review current methods to identify genotoxicants using transcriptomic profiling. Here, we summarize the findings of the workgroup on the state of the science regarding the use of transcriptomic biomarkers to identify genotoxic chemicals in vitro and in vivo.
View Article and Find Full Text PDFMed Chem
January 2025
Graduate School of NanoBio Sciences, Yokohama City University, 22-2, Seto, Kanazawa-Ku, Yokohama 236-0027, Japan.
Aim: There is an urgent need for new antimicrobial compounds with alternative modes of action for the treatment of drug-resistant bacterial and fungal pathogens.
Background: Carbohydrates and their derivatives are essential for biochemical and medicinal research because of their efficacy in the synthesis of biologically active drugs.
Objective: In the present study, a series of methyl α-D-mannopyranoside (MMP) derivatives (2-6) were prepared via direct acylation, and their biological properties were characterized.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!