Bypassing ubiquitination enables LAT recycling to the cell surface and enhanced signaling in T cells.

PLoS One

Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America.

Published: May 2020

LAT molecules defective in ubiquitination have an increased half-life and induce enhanced signaling when expressed in T cells. In this study, we have examined the role of ubiquitination in regulating LAT endocytosis, recycling, and degradation in resting and stimulated T cells. By tracking and comparing plasma membrane-labeled wild type and ubiquitination-resistant 2KR LAT, we find that ubiquitination promotes the degradation of surface LAT in T cells. Activation of T cells increases LAT ubiquitination and promotes trafficking of internalized LAT to lysosomes for degradation. Ubiquitination of LAT does not change internalization rates from the cell surface, but prevents efficient recycling of LAT to the surface of T cells. Our study demonstrates that surface LAT levels are tightly controlled by ubiquitination. LAT in unstimulated cells lacks ubiquitin allowing for increased LAT stability and efficient T cell activation upon TCR triggering; ubiquitination leads to efficient removal of LAT after activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7034843PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0229036PLOS

Publication Analysis

Top Keywords

lat
13
cell surface
8
enhanced signaling
8
cells study
8
ubiquitination promotes
8
surface lat
8
ubiquitination lat
8
cells
7
ubiquitination
7
surface
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!