IgG oligoclonal bands (OCBs) are present in the cerebrospinal fluid (CSF) of more than 95% of patients with multiple sclerosis (MS), and are considered to be the immunological hallmark of disease. However, the target specificities of the IgG in MS OCBs have remained undiscovered. Nevertheless, evidence that OCBs are associated with increased levels of disease activity and disability support their probable pathological role in MS. We investigated the antigen specificity of individual MS CSF IgG from 20 OCB-positive patients and identified 40 unique peptides by panning phage-displayed random peptide libraries. Utilizing our unique techniques of phage-mediated real-time Immuno-PCR and phage-probed isoelectric focusing immunoblots, we demonstrated that these peptides were targeted by intrathecal oligoclonal IgG antibodies of IgG1 and IgG3 subclasses. In addition, we showed that these peptides represent epitopes sharing sequence homologies with proteins of viral origin, and proteins involved in cell stress, apoptosis, and inflammatory processes. Although homologous peptides were found within individual patients, no shared peptide sequences were found among any of the 42 MS and 13 inflammatory CSF control specimens. The distinct sets of oligoclonal IgG-reactive peptides identified by individual MS CSF suggest that the elevated intrathecal antibodies may target patient-specific antigens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7034880 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0228883 | PLOS |
Anal Methods
January 2025
Department of Biochemistry and Molecular Biology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34450, Turkey.
Front Immunol
January 2025
Department of Neurology, Huashan Hospital, Fudan University and Institute of Neurology, Fudan University, National Center for Neurological Disorders, Shanghai, China.
Purpose: This study aimed to present clinical and immunological features in patients with neuroimmune complications of COVID-19 during Omicron wave in China.
Methods: Patients with neuroimmune complications associated with COVID-19 were retrospectively analyzed in Huashan Hospital from December 2022 to April 2023, during the widespread prevalence of Omicron variants in China. Demographic information, symptoms, electrophysiological findings, cerebrospinal fluid(CSF) test results and immunological markers, Magnetic Resonance Imaging(MRI) characteristics, treatment strategies and outcomes of these patients were reviewed and analyzed.
Mult Scler Relat Disord
December 2024
Department of Neurology, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
Introduction: Longitudinally extensive spinal cord lesions (LESCL) are characterized by T2-hyperintense signals spanning at least three vertebral body segments, with neuromyelitis optica spectrum disorders (NMOSD) being a significant cause. This study aimed to characterize the clinical, radiological, serological, and cerebrospinal fluid (CSF) features of LESCL and to compare NMOSD and non-NMOSD cases.
Methods: We conducted a retrospective cross-sectional study of adult patients diagnosed with LESCL at our center over a twelve-year period collecting data on demographics, clinical presentations, MRI findings, CSF analysis, and serological testing for AQP4-IgG and MOG-IgG antibodies.
J Neurol Sci
December 2024
Center for Advanced Neurological Research, Nitte University, Mangalore,India.
Background: Among white populations, a poly-specific antibody response against measles (M), rubella (R) and varicella zoster(Z) otherwise known as MRZR is seen in ∼70 % of MS and rarely in other demyelinating disorders. While the basis for MRZR is unclear, vaccination exposure / community acquired infections may have an influence on its frequency.
Objective: To determine the frequency and specificity of MRZR in MS and related disorders in a non- white population with historically low vaccinations and to contrast against oligoclonal bands (OCB).
Neurol Int
December 2024
Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA.
Background: Hereditary Sensory Motor Neuropathy (HSMN) 1A and Multiple Sclerosis (MS) are distinct demyelinating disorders affecting the peripheral and central nervous systems, respectively. We present a case of simultaneous occurrence of both conditions, exploring the clinical presentation, diagnostic workup, and potential interplay between these diseases. Case presentation and clinical approach: A 49-year-old male with a history of optic neuritis presented with progressive numbness, weakness, and sensory loss in all extremities over four years.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!