Biosurfactants exhibit outstanding interfacial properties and unique biological activities that fairly related to their self-assembly in solutions and at interfaces. Computational simulations provide structural details of biosurfactant aggregates at the molecular level relevant to thermodynamic properties, but the understanding of kinetics of self-assembly remains limited due to lower simulation efficiency. In this work, a coarse-grained model has been developed for microbial lipopeptide surfactin, and surfactin monolayer at the octane/water interface and micelle in aqueous solution were studied using molecular dynamics simulations. Interaction parameters were optimized and validated by comparing with results obtained from experiments and atomistic molecular dynamics simulations. In particular, self-assembly of surfactin in aqueous solution was studied using the optimized parameters. Results showed that coarse-grained simulations well reproduced structural properties of surfactin monolayer and micelle and the molecular behavior such as surfactin orientation and conformation. Self-assembly features of surfactin in different stages have been captured, and the aggregation numbers of dominant clusters were in accordance with experimental data. This report suggested that the present coarse-grained model and interaction parameters allowed surfactin simulations over longer timescales and larger systems, which provide insights into characterizing both the kinetics of surfactin self-assembly and the adsorption of surfactin onto varying interfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.9b11381 | DOI Listing |
Sci Rep
January 2025
Hunan Provincial Key Laboratory of Geotechnical Engineering for Stability Control and Health Monitoring, Hunan University of Science and Technology, Xiangtan, 411201, People's Republic of China.
The accumulation and discharge amount of coal gangue are substantial, occupying significant land resources over time. Utilizing coal gangue as subgrade filler can generate notable economic and social benefits. Coal gangue coarse-grained soil (CGSF) was used to conduct a series of large-scale vibration compaction tests and large-scale triaxial tests.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Department of Physical-Chemistry, Complutense University of Madrid, Madrid, Spain.
Intracellular liquid-liquid phase separation (LLPS) of proteins and nucleic acids is a fundamental mechanism by which cells compartmentalize their components and perform essential biological functions. Molecular simulations play a crucial role in providing microscopic insights into the physicochemical processes driving this phenomenon. In this study, we systematically compare six state-of-the-art sequence-dependent residue-resolution models to evaluate their performance in reproducing the phase behaviour and material properties of condensates formed by seven variants of the low-complexity domain (LCD) of the hnRNPA1 protein (A1-LCD)-a protein implicated in the pathological liquid-to-solid transition of stress granules.
View Article and Find Full Text PDFCommun Phys
December 2024
Institut für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria.
Despite the intrinsic charge heterogeneity of proteins plays a crucial role in the liquid-liquid phase separation (LLPS) of a broad variety of protein systems, our understanding of the effects of their electrostatic anisotropy is still in its early stages. We approach this issue by means of a coarse-grained model based on a robust mean-field description that extends the DLVO theory to non-uniformly charged particles. We numerically investigate the effect of surface charge patchiness and net particle charge on varying these features independently and with the use of a few parameters only.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Department of Physics, University of Exeter, Stocker Rd., Exeter EX4 4QL, UK.
Magnetoreception, the ability to sense magnetic fields, is widespread in animals but remains poorly understood. The leading model links this ability in migratory birds to the photo-activation of the protein cryptochrome. Magnetic information is thought to induce structural changes in cryptochrome via a transient radical pair intermediate.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Computer and Information Sciences, Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States.
Liquid phase-separating proteins can form condensates that play an important role in spatial and temporal organization of biological cells. The understanding of the mechanisms that lead to the formation of protein condensates and their interactions with other biomolecules may lead to processing routes for soft materials with tailored geometry and function. Fused in sarcoma (FUS) is an example of a nuclear protein that forms stable complexes, and recent studies have highlighted its ability to wet actin filaments and bundle them into networks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!