Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Photodiodes and integrated optical receivers operating at 1.55 micrometer (μm) wavelength are crucial for long-haul communication and data transfer systems. In this paper, we report C-band InAs quantum dash (Qdash) waveguide photodiodes (PDs) with a record-low dark current of 5 pA, a responsivity of 0.26 A/W at 1.55 μm, and open eye diagrams up to 10 Gb/s. These Qdash-based PDs leverage the same epitaxial layers and processing steps as Qdash lasers and can thus be integrated with laser sources for power monitors or amplifiers for preamplified receivers, manifesting themselves as a promising alternative to their InGaAs and Ge counterparts in low-power optical communication links.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.9b09715 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!