The hierarchically structured core-shell magnetic mesoporous silica nanospheres (Mag-MSNs) have attracted extensive attention, particularly in studies involving reliable preparations and diverse applications of the multifunctional nanomaterials in multi-disciplinary fields. Intriguingly, Mag-MSNs have been prepared with well-designed synthesis strategies and used as adsorbent materials, biomedicines, and in proteomics and catalysis due to their excellent magnetic responsiveness, enormous specific surface area and readiness for surface modifications. Through a carefully designed surface modification of Mag-MSNs, the performance and application prospects of the material are greatly improved. Typically, the introduction of various molecular matrices into the shell of Mag-MSNs facilitates the combination of surface modifications and magnetic separation technology. So far, as sustainable chemistry is concerned, it is important to recover the functionalized core-shell Mag-MSNs after the reaction and reuse them without losing activity. In this review, the design conceptions and the construction of core-shell Mag-MSNs are discussed. Furthermore, various surface modification approaches of core-shell Mag-MSNs are summarized, and recent applications of these functionalized nanomaterials in the fields of biomedicine, catalysis, proteomics and wastewater treatment are exemplified.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.202000045DOI Listing

Publication Analysis

Top Keywords

surface modifications
12
core-shell mag-msns
12
core-shell magnetic
8
magnetic mesoporous
8
mesoporous silica
8
silica nanospheres
8
surface modification
8
mag-msns
7
surface
6
core-shell
5

Similar Publications

Graphitic carbon nitride (g-C3N4) has gained significant attention as a promising nonmetallic semiconductor photocatalyst due to its photochemical stability, favorable electronic properties, and efficient light absorption. Nevertheless, its practical applications are hindered by limitations such as low specific surface area, rapid recombination of photogenerated charge carriers, poor electrical conductivity, and restricted photo-response ranges. This review explores recent advancements in the synthesis, modification and application of g-C3N4 and its nanocomposites with a focus on addressing these challenges.

View Article and Find Full Text PDF

Surface receptor-targeted Protein-based nanocarriers for drug delivery: Advances in cancer therapy.

Nanotechnology

January 2025

Department of Biotechnology, Kalasalingam Academy of Research and Education (Deemed to be University), Anand Nagar, School of Bio, Chemical & Process Enginneering, Krishnankoil, Krishnan Kovil, Tamil Nadu, 626126, INDIA.

Significant progress has been made in cancer therapy with protein-based nanocarriers targeted directly to surface receptors for drug delivery. The nanocarriers are a potentially effective solution for the potential drawbacks of traditional chemotherapy, such as lack of specificity, side effects, and development resistance. Peptides as nanocarriers have been designed based on their biocompatible, biodegradable, and versatile functions to deliver therapeutic agents into cancer cells, reduce systemic toxicity, and maximize therapy efficacy through utilizing targeted ligands such as antibodies, amino acids, vitamins, and other small molecules onto protein-based nanocarriers and thus ensuring that drugs selectively accumulate in the cancer cells instead of healthy organs/drug release at a target site without effects on normal cells, which inherently caused less systemic toxicity/off-target effect.

View Article and Find Full Text PDF

Disposable filtering face piece respirators (FFRs) are not approved for reuse as standard of care. However, lessons learnt from the SARS-CoV-2 pandemic, FFRs decontamination and reuse may be needed as crisis capacity strategy to ensure availability in medical facilities. We studied a decontamination methodology based on atmospheric pressure plasma technology, which allows for rapid, contact-free decontamination without utilisation of harmful chemicals, and suitable to access small pores and microscopic filters openings.

View Article and Find Full Text PDF

Cancer treatments such as surgery and chemotherapy have several limitations, including ineffectiveness against large or persistent tumors, high relapse rates, drug toxicity, and non-specificity of therapy. Researchers are exploring advanced strategies for treating this life-threatening disease to address these challenges. One promising approach is targeted drug delivery using prodrugs or surface modification with receptor-specific moieties for active or passive targeting.

View Article and Find Full Text PDF

Qualitative and Quantitative Analyses of 1-Aminocyclopropane-1-carboxylic Acid Concentrations in Plants Organs Using Phenyl Isothiocyanate Derivatization.

J Agric Food Chem

January 2025

Engineering Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China.

1-Aminocyclopropane-1-carboxylic acid (ACC) is a direct precursor of phytohormone ethylene. We used a phenyl isothiocyanate (PITC) derivatization modification method combined with spectrographic analysis to isolate and identify three products of the derivatization reactions of ACC and PITC. The MRM mode of UPLC-MS/MS was used to establish the analysis of 6-phenyl-5-thioxo-4,6-diazaspiro[2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!