Recently, an unprecedented observation of polar order, thermochromic behavior, and exotic mesophases in new chiral, bent-shaped systems with a -CH moiety placed at the transverse position of the central core was reported. Herein, a homologous series of compounds with even-numbered carbon chains from n=4 to 18 were synthesized, in which -Cl was substituted for -CH at the kink position and a drastic modification in the phase structure of the bent-shaped molecule was observed. An unusual stabilization of the cubic blue phase (BP) over a wide range of 16.4 °C has been witnessed. Two homologues in this series (1-12 and 1-14) exhibit an interesting phase sequence consisting of BPI/II, chiral nematic, twist grain boundary, smectic A, and smectic X (SmX) phases. The higher homologues (1-16 and 1-18) stabilize the SmX phase enantiotropically over the entire temperature range. Crystal structure analysis confirmed the bent molecular architecture, with a bent angle of 148°, and revealed the presence of two different molecular conformations in an asymmetric unit of compound 1-4. A DFT study corroborated that the -Cl moiety at the central core of the molecule led to an increase in the dipole moment along the transverse direction, which, in turn, facilitated the unusual stabilization of frustrated structures. Crystal polymorphism has been evidenced in three homologues (1-10, 1-12, and 1-14) of the series. On the application of mechanical pressure through grinding, compound 1-10 transformed from a bright yellow crystalline solid to a dark orange-green amorphous solid, which reversed upon dropwise addition of dichloromethane, indicating reversible mechanochromism in this class of compounds. In addition, excellent thermochromic behavior has been observed for compound 1-10 with a controlled temperature-color combination.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201905707DOI Listing

Publication Analysis

Top Keywords

chiral bent-shaped
8
wide range
8
thermochromic behavior
8
central core
8
unusual stabilization
8
1-12 1-14
8
compound 1-10
8
bent-shaped molecules
4
molecules exhibiting
4
exhibiting unusually
4

Similar Publications

Bicontinuous cubic liquid crystalline (LC) phases are of particular interest due their possible applications in electronic devices and special supramolecular chirality. Herein, we report the design and synthesis of first examples of achiral bent-shaped polycatenar dimers, capable of displaying mirror symmetry breaking in their cubic and isotropic liquid phases. The molecules have a taper-shaped 3,4,5-trialkoxybenzoate segment connected to rod-like building unit terminated with one terminal flexible chain.

View Article and Find Full Text PDF

We study the self-organization in a monolayer (a two-dimensional system) of flexible planar trimer particles. The molecules are made up of two mesogenic units linked by a spacer, all of which are modeled as hard needles of the same length. Each molecule can dynamically adopt two conformational states: an achiral bent-shaped (cis-) and a chiral zigzag (trans-) one.

View Article and Find Full Text PDF

Chiral liquid crystals (LCs) with their unique optical and mechanical properties are perspective functional soft materials for fundamental science and advanced technological applications. Herein, we introduce the chiral 3-aryl-3-hydroxypropanoic ester moiety as a versatile building block for the preparation of LC compounds. Three chiral subunits differing in the aromatic part were obtained through asymmetric transfer hydrogenation using Ru(II) complexes with ee from 98% to >99%.

View Article and Find Full Text PDF

We report a boron dipyrromethene that is chiral at boron and carbon (B*C*-BODIPY) and accessible through a two-pot, one-step synthesis-an interrupted Knoevenagel condensation. The electronic circular dichroism spectra of chiral high performance liquid chromatography-resolved enantiomers show clear Cotton effects (∣∣ ∼ 2.0 × 10) in the visible region, suggesting efficient chirality induction to the otherwise achiral BODIPY.

View Article and Find Full Text PDF

The coupling between molecular conformation and chirality is a cornerstone in the construction of supramolecular helical structures of small molecules across various length scales. Inspired by biological systems, conformational preselection and control in artificial helical molecules, polymers, and aggregates has guided various applications in optics, photonics, and chiral sorting among others, which are frequently based on an inherent chirality amplification through processes such as templating and self-assembly. The so-called B4 nano- or microfilament phase formed by some bent-shaped molecules is an exemplary case for such chirality amplification across length scales, best illustrated by the formation of distinct nano- or microscopic chiral morphologies controlled by molecular conformation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!