Geometric Confined Pneumatic Soft-Rigid Hybrid Actuators.

Soft Robot

Department of Mechanical Engineering, Institute of Design Science and Basic Components, Xi'an Jiaotong University, Xi'an, China.

Published: October 2020

In this work, we propose a new kind of soft-rigid hybrid actuator composed mainly of soft chambers and rigid frames. Compared with the well-known fiber-reinforced soft actuators, the hybrid actuators are able to ensure the design of noncircular cross-sectional shapes. It is demonstrated that rigid frames are capable of providing geometric constraints, reducing the ineffective deformation, and improving the energy utilization for the hybrid actuators with noncircular cross-sections. The essential characteristics of rigid constraints and flexible constraints are obtained by simulation and experiments on specimens with three different cross-sectional shapes. Furthermore, a spring-fluid film model is introduced to characterize the behavior of a representative hybrid linear actuator and a bending actuator with a rectangular cross-section, and it is also proved by the corresponding experiments. The change of the cross-sectional shape of fiber-reinforced soft actuators under pressurization is also explained theoretically as a contrast. Then, two application examples, namely, a robotic gripper and a caudal fin formed from linear actuators, are designed and demonstrated, showing the advantages and potential applications of the proposed geometric confined hybrid actuators. The proposed soft-rigid hybrid actuators combine the properties of soft and rigid materials, expand the design scope of the compliant actuators, and provide new solutions for robotics, especially for soft robots with specific requirements for their shapes or profiles.

Download full-text PDF

Source
http://dx.doi.org/10.1089/soro.2018.0157DOI Listing

Publication Analysis

Top Keywords

hybrid actuators
20
soft-rigid hybrid
12
actuators
9
geometric confined
8
rigid frames
8
fiber-reinforced soft
8
soft actuators
8
cross-sectional shapes
8
hybrid
7
soft
5

Similar Publications

Multifunctional Microflowers for Precise Optoacoustic Localization and Intravascular Magnetic Actuation In Vivo.

Adv Healthc Mater

January 2025

Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, Winterthurerstrasse 190, Zurich, 8057, Switzerland.

Efficient drug delivery remains a significant challenge in modern medicine and pharmaceutical research. Micrometer-scale robots have recently emerged as a promising solution to enhance the precision of drug administration through remotely controlled navigation within microvascular networks. Real-time tracking is crucial for accurate guidance and confirmation of target arrival.

View Article and Find Full Text PDF

A Versatile Dual-Responsive Shape-Memory Gripper via Additive Manufacturing Toward High-Performance Cross-Scale Objects Maneuvering.

Small

January 2025

Department of Materials Physics and New Energy Device School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China.

Smart grippers serving as soft robotics have garnered extensive attentions owing to their great potentials in medical, biomedical, and industrial fields. Though a diversity of grippers that account for manipulating the small objects (e.g.

View Article and Find Full Text PDF

The development of photoresponsive ferroelastics, which couple light-induced macroscopic mechanical and microscopic domain properties, represents a frontier in materials science with profound implications for advanced functional applications. In this study, we report the rational design and synthesis of two new organic-inorganic hybrid ferroelastic crystals, (MA)(MeN)[Fe(CN)(NO)] (MA = methylammonium) () and (MA)(MeNOH)[Fe(CN)(NO)] (), using a dual-organic molecular design strategy that exploits hydrogen-bonding interactions for tailoring ferroelastic properties. Specifically, exhibits a two-step phase transition at 138 and 242 K, while the introduction of a hydroxyl group in stabilizes its ferroelastic phase to a significantly higher temperature, achieving a phase transition at 328 K, 86 K above that of .

View Article and Find Full Text PDF

The numerical analysis examines the attributes of magnetohydrodynamic natural convection in a closed cavity including a circular hollow. Because mono and hybrid nanofluids have many applications in thermal engineering and manufacturing, hybrid nanofluids are utilized as the substance within the entire domain. The investigation centers on a closed, trapezoidal-shaped hollow with a heated surface ring.

View Article and Find Full Text PDF

Actuators based on liquid crystals have garnered significant attention due to their potential applications in wearable technology and bionic soft robots. Composite films composed of liquid crystal polymer networks (LCNs) and other stimulus-responsive materials exhibit the capability to convert external stimuli into mechanical deformation. However, the development of sunlight-driven actuators presents significant challenges, primarily due to the relatively low intensity of sunlight and the limited conversion efficiency of photothermal materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!