Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Currently available strategies show limited effects in preventing morbidity and disability from chronic diabetic wounds. Ideal vascularization is indispensable for better restoration and prognosis of diabetic wounds. This study aims to investigate the role of tetrahedral framework nucleic acids (tFNAs) in the process of angiogenesis during diabetic wound healing and the underlying mechanism. The in vitro results showed that tFNAs treatment enhanced the formation of a vessel-like structure that was inhibited by advanced glycation end products (AGEs). Positive variations were detected in aspects of cell viability, migratory ability, nitric oxide (NO) levels, and vascular endothelial growth factor-A (VEGF-A) expression. In addition, high reactive oxygen species (ROS) levels and gene expressions relevant to oxidative damage and inflammation in diabetic human umbilical vein endothelial cells (HUVECs) were attenuated by tFNAs. As for the underlying mechanism, the p-Akt/total Akt ratio, nuclear factor erythroid 2-related factor 2 (Nrf2) levels, and heme oxygenase-1 (HO-1) levels were higher in diabetic HUVECs treated with tFNAs. In vivo experiments showed that tFNAs facilitated diabetic wound healing by accelerating vascularization, epithelialization, collagen deposition, and collagen alignment. In conclusion, tFNAs could protect endothelial cell function, reduce inflammation, and impede oxidative damage through their antioxidant activity via the Akt/Nrf2/HO-1 signaling pathway. The application of tFNAs may pave the way for better healing of diabetic wounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c00874 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!