Application of the Lake Biotic Index (LBI) in the ecological characterization of a North Patagonian lake in Chile.

Heliyon

Laboratorio de Limnología, Departamento de Acuicultura y Recursos Agroalimentarios, Universidad de los Lagos, Av. Fuchslocher, 1305, Osorno, Chile.

Published: October 2019

Increased pollution and degradation of water resources and their associated ecosystems has stimulated the development of tools and methodologies to characterize, estimate, predict, and reverse the environmental impact of anthropic effects on water bodies. The Secondary Water Quality Standards (NSCA) adopted in Chile have incorporated the use of bioindicators complementary to physicochemical analyses, in order to determine the ecological condition of lotic and lentic environments. Our research used the "Lake Biotic Index" (LBI) to establish the ecological condition of Lake Rupanco using benthic macroinvertebrates. The results indicated an Oligo-Eubiotic condition for this lake given the high concentration of oxygen and low organic matter content in sediments, in addition to low biogenic potential and good taxa preservation in both the autumn and spring surveys. Features of the ecological condition obtained through the application of the LBI (benthic subsystem) conform to the results of physicochemical and microalgae analyses undertaken previously in Lake Rupanco (pelagic subsystem). Based on these results, we support application of the LBI index as a complementary tool for the integrated management of lentic ecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7021725PMC
http://dx.doi.org/10.1016/j.heliyon.2019.e02492DOI Listing

Publication Analysis

Top Keywords

ecological condition
12
condition lake
8
lake rupanco
8
application lbi
8
application lake
4
lake biotic
4
lbi
4
biotic lbi
4
ecological
4
lbi ecological
4

Similar Publications

Background: In this study, we present an in-depth analysis of the Eurasian minnow (Phoxinus phoxinus) genome, highlighting its genetic diversity, structural variations, and evolutionary adaptations. We generated an annotated haplotype-phased, chromosome-level genome assembly (2n = 50) by integrating high-fidelity (HiFi) long reads and chromosome conformation capture data (Hi-C).

Results: We achieved a haploid size of 940 megabase pairs (Mbp) for haplome 1 and 929 Mbp for haplome 2 with high scaffold N50 values of 36.

View Article and Find Full Text PDF

Plants are colonized by a vast array of microorganisms that outstrip plant cell densities and genes, thus referred to as plant's second genome or extended genome. The microbial communities exert a significant influence on the vigor, growth, development and productivity of plants by supporting nutrient acquisition, organic matter decomposition and tolerance against biotic and abiotic stresses such as heat, high salt, drought and disease, by regulating plant defense responses. The rhizosphere is a complex micro-ecological zone in the direct vicinity of plant roots and is considered a hotspot of microbial diversity.

View Article and Find Full Text PDF

Introduction: Plant physiology response and adaptation to drought stress has become a hotspot in plant ecology and evolution. possesses high ecological, ornamental and economic benefits. It has large root system and tolerance to cold, drought and poor soil.

View Article and Find Full Text PDF

Most biomedical research on animals is based on the handful of the so-called standard model organisms, i.e. laboratory mice, rats or , but the keys to some important biomedical questions may simply not be found in these.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!