17β-Estradiol Inhibits PCSK9-Mediated LDLR Degradation Through GPER/PLC Activation in HepG2 Cells.

Front Endocrinol (Lausanne)

Department of Physiology, West China School of Basic Medical and Forensic Medicine, Sichuan University, Chengdu, China.

Published: January 2020

Plasma levels of PCSK9 are significantly higher in postmenopausal women. Pharmacologically increased estrogen levels have been shown to lower PCSK9 and LDL-C levels in animals and humans. The action of estrogen suggests that it has the ability to prevent PCSK9-mediated LDLR degradation in liver cells. However, little is known about how estrogen alters PCSK9-mediated LDLR degradation. Here, we report that 17β-estradiol (βE2) reduces PCSK9-mediated LDLR degradation by a mechanism that involves activation of the G protein-coupled estrogen receptor (GPER). In cultured HepG2 cells, βE2 prevented the internalization of PCSK9, which subsequently lead to PCSK9-mediated LDLR degradation. The altered LDLR levels also resulted in an increase in LDL uptake that was not observed in the absence of PCSK9. In addition, we showed that clathrin was rapidly increased in the presence of PCSK9, and this increase was blocked by βE2 incubation, suggesting rapid recruitment of clathrin in HepG2 cells. PLCγ activation and intracellular Ca release were both increased due to the rapid effect of estrogen. By using a GPER antagonist G15, we demonstrated that the GPER mediates the action of estrogen. Together, the data from this study demonstrate that estrogen can regulate LDLR levels mainly through GPER activation, which prevents PCSK9-dependent LDLR degradation in HepG2 cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7002320PMC
http://dx.doi.org/10.3389/fendo.2019.00930DOI Listing

Publication Analysis

Top Keywords

ldlr degradation
24
pcsk9-mediated ldlr
20
hepg2 cells
16
ldlr
8
action estrogen
8
ldlr levels
8
estrogen
7
degradation
6
pcsk9-mediated
5
cells
5

Similar Publications

Background: Familial hyperlipidemia (familial hypercholesterolemia, FH) is an autosomal genetic disorder. It includes type heterozygous familial hyperlipidemia (heterozygous familial hypercholesterolemia). HeFH is mainly caused by mutations in the LDLR, APOB, and PCSK9 genes and is characterized by elevated plasma low-density lipoprotein cholesterol levels.

View Article and Find Full Text PDF

The ternary complex of PGRMC1-σ2R/TMEM97-LDLR has recently been discovered and plays a role in cholesterol transport. This study investigated whether individual components of that complex are prognostic breast cancer biomarkers and defined expression in established molecular subtypes. 4,463 invasive breast cancers were analyzed as a function of molecular and phenotypic markers, estimates of cellular proliferation, and recurrence-free survival.

View Article and Find Full Text PDF

The pleiotropic effects of PCSK9 in cardiovascular diseases beyond cholesterol metabolism.

Acta Physiol (Oxf)

February 2025

Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.

Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality globally, with elevated low-density lipoprotein cholesterol (LDL-C) levels being a major risk factor. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a critical role in regulating LDL-C levels by promoting the degradation of hepatic low-density lipoprotein receptors (LDLR) responsible for clearing LDL-C from the circulation. PCSK9 inhibitors are novel lipid-modifying agents that have demonstrated remarkable efficacy in reducing plasma LDL-C levels and decreasing the incidence of CVD.

View Article and Find Full Text PDF

Integrative analysis of miRNAs and proteins in plasma extracellular vesicles of patients with familial hypercholesterolemia.

Clin Chim Acta

January 2025

Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000 Brazil. Electronic address:

Background And Aims: Familial Hypercholesterolemia (FH) is a monogenic disease that leads to early-onset atherosclerosis. Causative mutations in FH-related genes are found in 60-80 % of patients, while epigenetic factors may contribute to mutation-negative cases. This study analyzed miRNAs and proteins from plasma-derived extracellular vesicles (EVs) of FH patients to explore their contribution in FH diagnosis.

View Article and Find Full Text PDF

Carotenoid Interactions with PCSK9: Exploring Novel Cholesterol-Lowering Strategies.

Pharmaceuticals (Basel)

November 2024

Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy.

: This study investigated the potential of green algae-derived carotenoids as natural inhibitors of the proprotein convertase subtilisin/kexin type 9 (PCSK9), a key regulator of cholesterol metabolism. PCSK9 promotes the degradation of low-density lipoprotein receptors (LDLR), thereby increasing blood cholesterol levels and elevating the risk of cardiovascular diseases. /: We screened the pharmacophore fit score of 27 carotenoids with PCSK9 and identified 14 that were analyzed for binding affinity and molecular interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!