The immature brain is especially vulnerable to lead (Pb) toxicity, which is considered an environmental neurotoxin. Pb exposure during development compromises the cognitive and behavioral attributes which persist even later in adulthood, but the mechanisms involved in this effect are still unknown. On the other hand, the kynurenine pathway metabolites are modulators of different receptors and neurotransmitters related to cognition; specifically, high kynurenic acid levels has been involved with cognitive impairment, including deficits in spatial working memory and attention process. The aim of this study was to evaluate the relationship between the neurocognitive impairment induced by Pb toxicity and the kynurenine pathway. The dams were divided in control group and Pb group, which were given tap water or 500 ppm of lead acetate in drinking water ad libitum, respectively, from 0 to 23 postnatal day (PND). The poison was withdrawn, and tap water was given until 60 PND of the progeny. The locomotor activity in open field, redox environment, cellular function, kynurenic acid (KYNA) and 3-hydroxykynurenine (3-HK) levels as well as kynurenine aminotransferase (KAT) and kynurenine monooxygenase (KMO) activities were evaluated at both 23 and 60 PND. Additionally, learning and memory through buried food location test and expression of KAT and KMO, and cellular damage were evaluated at 60 PND. Pb group showed redox environment alterations, cellular dysfunction and KYNA and 3-HK levels increased. No changes were observed in KAT activity. KMO activity increased at 23 PND and decreased at 60 PND. No changes in KAT and KMO expression in control and Pb group were observed, however the number of positive cells expressing KMO and KAT increased in relation to control, which correlated with the loss of neuronal population. Cognitive impairment was observed in Pb group which was correlated with KYNA levels. These results suggest that the increase in KYNA levels could be a mechanism by which Pb induces cognitive impairment in adult mice, hence the modulation of kynurenine pathway represents a potential target to improve behavioural alterations produced by this environmental toxin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035386PMC
http://dx.doi.org/10.1038/s41598-020-60159-3DOI Listing

Publication Analysis

Top Keywords

kynurenine pathway
16
cognitive impairment
16
impairment induced
8
lead toxicity
8
kynurenic acid
8
control group
8
tap water
8
redox environment
8
3-hk levels
8
evaluated pnd
8

Similar Publications

Backgrounds: Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders.

View Article and Find Full Text PDF

Tryptophan Kynurenine Pathway-Based Imaging Agents for Brain Disorders and Oncology-From Bench to Bedside.

Biomolecules

January 2025

Department of Radiology, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA.

Tryptophan (Trp)-based radiotracers have excellent potential for imaging many different types of brain pathology because of their involvement with both the serotonergic and kynurenine (KYN) pathways. However, radiotracers specific to the kynurenine metabolism pathway are limited. In addition, historically Trp-based radiopharmaceuticals were synthesized with the short-lived isotope carbon-11.

View Article and Find Full Text PDF

Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates cell immune responses in a cell type-specific and ligand-dependent manner. In the central nervous system, astrocytic AhR plays important roles in regulating neuroinflammation by mediating responses to endogenous ligands generated from the inflammation-induced indoleamine 2,3-dioxygenase 1 (IDO1)/kynurenine (KYN) pathway. We previously demonstrated that reduction of AhR expression decreases lipopolysaccharide (LPS)-induced pro-inflammatory responses in microglia.

View Article and Find Full Text PDF

Introduction: Indoleamine-2,3-dioxygenase (IDO) converts L-tryptophan (T) to L-kynurenine (K) resulting in an immunosuppressive microenvironment. Aim of the current study is to evaluate in patients with neuroendocrine tumor (NET): 1) T and K concentrations; 2) correlation with clinical outcome; 3) relationship between IDO activity and inflammatory cytokines.

Methods: A cross-sectional study was performed to investigate the IDO pathway in patients in follow-up for NET.

View Article and Find Full Text PDF

Thrombin-induced kynurenine 3-monooxygenase causes variations in the kynurenine pathway, leading to neurological deficits in a murine intracerebral hemorrhage model.

J Pharmacol Sci

February 2025

Department of Physical Chemistry for Bioactive Molecules, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan.

The purpose of the present study is to investigate changes in the kynurenine pathway after intracerebral hemorrhage (ICH) and its effects on ICH-induced injury. The exposure of a primary rat microglial culture to thrombin increased the mRNA level of kynurenine 3-monooxygenase (KMO), and this increase was attenuated by a p38 MAPK inhibitor. Thrombin also increased the protein level of KMO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!