Innovations in soft material synthesis and fabrication technologies have led to the development of integrated soft electronic devices. Such soft devices offer opportunities to interact with biological cells, mimicking their soft environment. However, existing fabrication technologies cannot create the submicron-scale, soft transducers needed for healthcare and medical applications involving single cells. This work presents a nanofabrication strategy to create submicron-scale, all-soft electronic devices based on eutectic gallium-indium alloy (EGaIn) using a hybrid method utilizing electron-beam lithography and soft lithography. The hybrid lithography process is applied to a biphasic structure, comprising a metallic adhesion layer coated with EGaIn, to create soft nano/microstructures embedded in elastomeric materials. Submicron-scale EGaIn thin-film patterning with feature sizes as small as 180 nm and 1 μm line spacing was achieved, resulting in the highest resolution EGaIn patterning technique to date. The resulting soft and stretchable EGaIn patterns offer a currently unrivaled combination of resolution, electrical conductivity, and electronic/wiring density.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035367 | PMC |
http://dx.doi.org/10.1038/s41467-020-14814-y | DOI Listing |
J Med Internet Res
January 2025
Department of Psychiatry, Yongin Severance Hospital, Yongin, Republic of Korea.
Background: The COVID-19 pandemic has accelerated the digitalization of modern society, extending digital transformation to daily life and psychological evaluation and treatment. However, the development of competencies and literacy in handling digital technology has not kept pace, resulting in a significant disparity among individuals. Existing measurements of digital literacy were developed before widespread information and communications technology device adoption, mainly focusing on one's perceptions of their proficiency and the utility of device operation.
View Article and Find Full Text PDFPLoS One
January 2025
US Department of Veterans Affairs, Palo Alto Healthcare System, National Center for Collaborative Healthcare Innovation, Palo Alto, California, United States of America.
Background: The intrauterine device (IUD) is a highly effective form of long-acting reversible contraception, widely recognized for its convenience and efficacy. Despite its benefits, many patients report moderate to severe pain during and after their IUD insertion procedure. Furthermore, reports suggest significant variability in pain control medications, including no adequate pain medication.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Türkiye.
Skin-like bioelectronics offer a transformative technological frontier, catering to continuous and real-time yet highly imperceptible and socially discreet digital healthcare. The key technological breakthrough enabling these innovations stems from advancements in novel material synthesis, with unparalleled possibilities such as conformability, miniature footprint, and elasticity. However, existing solutions still lack desirable properties like self-adhesivity, breathability, biodegradability, transparency, and fail to offer a streamlined and scalable fabrication process.
View Article and Find Full Text PDFSci Adv
January 2025
Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China.
Multi-valued logics (MVLs) offer higher information density, reduced circuit and interconnect complexity, lower power dissipation, and faster speed over conventional binary logic system. Recent advancement in MVL research, particularly with emerging low-dimensional materials, suggests that breakthroughs may be imminent if multistates transistors can be fabricated controllably for large-scale integration. Here, a concept of source-gating transistors (SGTs) is developed and realized using carbon nanotubes (CNTs).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou, 310024, China.
The integration of mid-infrared (MIR) photodetectors with built-in encryption capabilities holds immense promise for advancing secure communications in decentralized networks and compact sensing systems. However, achieving high sensitivity, self-powered operation, and reliable performance at room temperature within a miniaturized form factor remains a formidable challenge, largely due to constraints in MIR light absorption and the intricacies of embedding encryption at the device level. Here, a novel on-chip metamaterial-enhanced, 2D tantalum nickel selenide (Ta₂NiSe₅)-based photodetector, meticulously designed with a custom-engineered plasmonic resonance microstructure to achieve self-powered photodetection in the nanoampere range is unveiled.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!