Toll-like receptors (TLRs) are critical sensors related to inflammation and tumorigenesis. Among all subtypes, the TLR4 is a highly described transmembrane protein involved in the inflammatory process. The TLR4/myeloid differentiation factor 88 (MyD88) signaling pathway has been implicated in oncogenic events in several tissues and is associated with survival of patients. Through activation, TLR4 recruits adaptor proteins, i.e., MyD88 or TRIF, to triggers canonical and non-canonical signaling pathways that result in distinct immune responses. In most cancer cells, uncontrolled TLR4 signaling modifies the tumor microenvironment to proliferate and evade immune surveillance. By contrast, TLR4 activation can produce antitumor activities, thereby inhibiting tumor growth and enhancing the proper immune response. We review herein recent approaches on the role of the TLR4 signaling pathway and discuss potential candidates for gynecological cancer therapies; among these agents, natural and synthetic compounds have been tested both in vitro and in vivo. Since TLR4 ligands have been investigated as effective immune-adjuvants in the context of these aggressive malignancies, we described how TLR4 signaling controls part of the tumor-related inflammatory process and which are the new targeting molecules implicated in the regulation of tumorigenicity in ovarian, cervical, and endometrial cancers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2020.117435 | DOI Listing |
Curr Protein Pept Sci
January 2025
Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi-75270, Pakistan.
Background: Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer with a high recurrence rate. A new therapeutic intervention is urgently needed to combat this lethal subtype. The identification of biomarkers is also crucial for improving outcomes in TNBC.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2025
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
Cancer manifests as uncontrolled cell proliferation. Tankyrase, a poly(ADP-ribose) polymerase member, is vital in Wnt signal transmission, making it a promising cancer therapy target. The Wnt/β-catenin pathway regulates critical biological processes like genomic stability, gene expression, energy utilization, and apoptosis.
View Article and Find Full Text PDFBiochem Genet
January 2025
Anhui Province Key Laboratory of Basic Research and Transformation of Age-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, P. R. China.
The metabolic pathway of aerobic glycolysis in tumor cells has garnered significant attention in tumor research because of its high activation in cancer cells. Previous research conducted by our team has demonstrated that Apolipoprotein M (APOM) exhibits potential as a factor against liver cancer. However, further investigations are needed to elucidate the precise approach and mechanism that are involved in this process.
View Article and Find Full Text PDFJ Bioenerg Biomembr
January 2025
Department of Endocrinology, Tianjin 4th Center Hospital, Tianjin, 300140, China.
To investigate the role of silent information regulator 6 (SIRT6) in regulating podocyte injury in diabetic nephropathy (DN) through autophagy mediated by Notch signaling pathway. A blank control group (group A), a diabetic nephropathy group (group B), and a Sirt6 intervention group (group C) were established. The group A cells were human normal glomerular podocyte cell lines (HGPCs) without any treatment.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Institute of Food Sciences and Technology, National Taiwan University, 10617 Taipei, Taiwan.
Obesity-induced muscle alterations, such as inflammation, metabolic dysregulation, and myosteatosis, lead to a decline in muscle mass and function, often resulting in sarcopenic obesity. Currently, there are no definitive treatments for sarcopenic obesity beyond lifestyle changes and dietary supplementation. Feruloylacetone (FER), a thermal degradation product of curcumin, and its analog demethoxyferuloylacetone (DFER), derived from the thermal degradation of bisdemethoxycurcumin, have shown potential antiobesity effects in previous studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!