Background: Pulmonary capillary stress failure is potentially involved in exercise-induced hypoxemia (ie, a significant fall in hemoglobin oxygen saturation [Spo]) during sea level exercise in endurance-trained athletes. It is unknown whether there are specific properties of pulmonary vascular function in athletes exhibiting oxygen desaturation.

Methods: Ten endurance-trained athletes with exercise-induced hypoxemia (EIH), nine endurance-trained athletes with no exercise-induced hypoxemia (NEIH), and 10 untrained control subjects underwent an incremental exercise stress echocardiography coupled with lung diffusion capacity for carbon monoxide (Dlco) and lung diffusion capacity for nitric oxide (Dlno) testing. Functional adaptation of the pulmonary circulation was evaluated with measurements of mean pulmonary arterial pressure (mPAP), pulmonary capillary pressure, pulmonary vascular resistance (PVR), cardiac output (Qc), and pulmonary vascular distensibility (alpha) mathematically determined from the curvilinearity of the multi-point mPAP/Qc relation.

Results: EIH athletes exhibited a lower exercise-induced PVR decrease compared with the untrained and NEIH groups (P < .001). EIH athletes showed higher maximal mPAP compared with NEIH athletes (45.4 ± 0.9 mm Hg vs 41.6 ± 0.9 mm Hg, respectively; P = .003); there was no difference between the NEIH and untrained subjects. Alpha was lower in the EIH group compared with the NEIH group (P < .05). Maximal mPAP, Pcap, and alpha were correlated with the fall of Spo during exercise (P < .01, P < .01, and P < .05). Dlno and Dlco increased with exercise in all groups, with no differences between groups. Dlno/Qc was correlated to the exercise-induced Spo changes (P < .05).

Conclusions: EIH athletes exhibit higher maximal pulmonary vascular pressures, lower vascular distensibility, or exercise-induced changes in PVR compared with NEIH subjects, in keeping with pulmonary capillary stress failure or intrapulmonary shunting hypotheses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chest.2020.01.037DOI Listing

Publication Analysis

Top Keywords

exercise-induced hypoxemia
16
pulmonary vascular
16
athletes exercise-induced
12
pulmonary capillary
12
endurance-trained athletes
12
eih athletes
12
compared neih
12
athletes
9
pulmonary
9
capillary stress
8

Similar Publications

Exercise promotes peripheral glycolysis in skeletal muscle through miR-204 induction via the HIF-1α pathway.

Sci Rep

January 2025

Laboratory of Biochemistry, College of Veterinary Medicine, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Korea.

The mechanisms underlying exercise-induced insulin sensitization are of great interest, as exercise is a clinically critical intervention for diabetic patients. Some microRNAs (miRs) are secreted from skeletal muscle after exercise where they regulate insulin sensitivity, and have potential as diagnostic markers in diabetic patients. miR-204 is well-known for its involvement in development, cancer, and metabolism; however, its role in exercise-induced glycemic control remains unclear.

View Article and Find Full Text PDF

This study investigated sex differences in the development of pulmonary edema and exercise-induced arterial hypoxemia (EIAH) in well-trained endurance athletes during near-maximal exercise in a real-world setting. Twenty participants (10M vs. 10F; V̇Opeak: 69.

View Article and Find Full Text PDF

Predictive factors of progression in mild fibrosing interstitial lung disease patients with gender-age-physiology score of 3 or less.

Respir Investig

January 2025

Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan.

Article Synopsis
  • The study aimed to identify prognostic factors for annual progression in mild fibrosing interstitial lung disease (FILD) using retrospective data and logistic regression analysis.
  • Significant factors associated with progression included the diagnosis of specific lung diseases, patient-reported outcomes, changes in lung function tests, and the CT scan's appearance.
  • The findings suggest that factors such as exercise-induced hypoxia, radiological patterns, and certain disease diagnoses are key predictors of how FILD may worsen over time.
View Article and Find Full Text PDF

Endurance-trained athletes require physiological explorations that have evolved throughout the history of exercise physiology with technological advances. From the use of the Douglas bag to measure gas exchange to the development of wearable connected devices, advances in physiological explorations have enabled us to move from the classic but still widely used cardiopulmonary exercise test (CPET) to the collection of data under real conditions on outdoor endurance or ultra-endurance events. However, such explorations are often costly, time-consuming, and complex, creating a need for efficient analysis methods.

View Article and Find Full Text PDF

From Microcirculation to Aging-Related Diseases: A Focus on Endothelial SIRT1.

Pharmaceuticals (Basel)

November 2024

Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.

Silent information regulator sirtuin 1 (SIRT1) is an NAD+-dependent deacetylase with potent anti-arterial aging activities. Its protective function in aging-related diseases has been extensively studied. In the microcirculation, SIRT1 plays a crucial role in preventing microcirculatory endothelial senescence by suppressing inflammation and oxidative stress while promoting mitochondrial function and optimizing autophagy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!