A versatile organic-inorganic hybrid structure makes a metal-organic framework (MOF) an outstanding host for different kinds of guests; in addition, its easy pyrolysis nature has been proven to be useful as precursors in the construction of carbon-based materials with a special porous structure. Herein, a novel porous composite nanostructure of an aminated MIL-53(Al)@carbon nanotube (CNT) has been successfully constructed for the first time based on in situ synthesis combining the pyrolysis of ZIF-67. The resulting composite nanostructure was performed by the means of scanning electron microscopy, Brunauer-Emmett-Teller analysis, typical and high-resolution transmission electronic microscopy, X-ray photoelectron spectroscopy, etc. The results showed that a compact heterostructure has been formed between an aminated MIL-53(Al) and a CNT. The resulting composites, named N-MIL@CNT, represent distinct promoted activities in the removal of Bisphenol AF (BPAF) and Metribuzin from wastewater, and the maximum adsorption values were 274 mg/g (BPAF) and 213 mg/g (Metribuzin), which are larger than the results obtained by other MOF-based nanomaterials. The adsorption isotherm, kinetics, and thermodynamics were studied in detail, and the selective adsorption mechanism was also suggested. The excellent selectivity, reusability, and structure stability suggest the potential application of this composite nanostructure in the selective removal of BPAF or Metribuzin from the practical wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.9b02841DOI Listing

Publication Analysis

Top Keywords

composite nanostructure
12
removal bisphenol
8
bpaf metribuzin
8
construction aminated
4
aminated mil-53al-functionalized
4
mil-53al-functionalized carbon
4
carbon nanotube
4
nanotube efficient
4
efficient removal
4
metribuzin
4

Similar Publications

In the modern age, half of the population is facing various chronic illnesses due to glucose maintenance in the body, major causes of fatality and inefficiency. The early identification of glucose plays a crucial role in medical treatment and the food industry, particularly in diabetes diagnosis. In the past few years, non-enzymatic electrochemical glucose sensors have received a lot of interest for their ability to identify glucose levels accurately.

View Article and Find Full Text PDF

Insights into the electroactive impact of magnetic nanostructures in PVDF composites small-angle neutron scattering.

Nanoscale

January 2025

Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal.

Poly(vinylidene fluoride) (PVDF) is technologically relevant due to its thermal stability; chemical, mechanical and radiation resistance; transparency; biocompatibility; and ease of processing. Several of those applications are related to its high electroactivity, for which the β-phase of the polymer is its most renowned protagonist. In this context, extensive research has been conducted on the crystallization of PVDF in the β-phase, when processed from melt and from solution.

View Article and Find Full Text PDF

A novel efficient electrochemical sensor for detecting paracetamol contaminants in polluted water using an active electrode from tungsten oxide nanoplates.

Phys Chem Chem Phys

January 2025

Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia.

Herein, electrochemical sensing of paracetamol in polluted water was achieved using facile-synthesized tungsten oxide nanoparticles. Ion exchange resin has been used as a sustainable preparation route, while the prepared nanoparticles have been characterized by XRD and SEM analyses. Orthorhombic WO·HO nano-plates have been synthesized a facile preparation method, where the crystal size has been calculated as 25-33 nm, and these results were used to create a 3D model of the prepared WO·HO nano-plates.

View Article and Find Full Text PDF

UV-Resistant Nanostructured Anti-reflective Film for Achieving Efficiency Enhancement of Perovskite Solar Cells and Potential of Fabricating Large-Scale Cu(In, Ga)Se Solar Cells.

ACS Appl Mater Interfaces

January 2025

Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China.

Sticker-type transparent antireflective film (STAF) is applied to perovskite solar cells (PSCs) to reduce the reflection and improve the light-trapping ability of PSCs. However, the development of STAF is hindered by many factors, such as expensive materials, low actual service life, unsatisfactory antireflective effect, and a lack of research on stability. This work proposes an ultraviolet (UV)-resistant enhanced sticker-type nanostructure acrylic resin antireflective film (SNAAF), which is applied to the incident surface of PSCs.

View Article and Find Full Text PDF

Electrocatalysis: From Planar Surfaces to Nanostructured Interfaces.

Chem Rev

January 2025

Department of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States.

The reactions critical for the energy transition center on the chemistry of hydrogen, oxygen, carbon, and the heterogeneous catalyst surfaces that make up electrochemical energy conversion systems. Together, the surface-adsorbate interactions constitute the electrochemical interphase and define reaction kinetics of many clean energy technologies. Practical devices introduce high levels of complexity where surface roughness, structure, composition, and morphology combine with electrolyte, pH, diffusion, and system level limitations to challenge our ability to deconvolute underlying phenomena.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!