Model-based accuracy, defined as the theoretical correlation between true and estimated breeding value, can be obtained for each individual as a function of its prediction error variance (PEV) and inbreeding coefficient F, in BLUP, GBLUP and SSGBLUP genetic evaluations. However, for computational convenience, inbreeding is often ignored in two places. First, in the computation of reliability = 1-PEV/(1 + F). Second, in the set-up, using Henderson's rules, of the inverse of the pedigree-based relationship matrix A. Both approximations have an effect in the computation of model-based accuracy and result in wrong values. In this work, first we present a reminder of the theory and extend it to SSGBLUP. Second, we quantify the error of ignoring inbreeding with real data in three scenarios: BLUP evaluation and SSGBLUP in Uruguayan dairy cattle, and BLUP evaluations in a line of rabbit closed for >40 generations with steady increase of inbreeding up to an average of 0.30. We show that ignoring inbreeding in the set-up of the A-inverse is equivalent to assume that non-inbred animals are actually inbred. This results in an increase of apparent PEV that is negligible for dairy cattle but considerable for rabbit. Ignoring inbreeding in reliability = 1-PEV/(1 + F) leads to underestimation of reliability for BLUP evaluations, and this underestimation is very large for rabbit. For SSGBLUP in dairy cattle, it leads to both underestimation and overestimation of reliability, both for genotyped and non-genotyped animals. We strongly recommend to include inbreeding both in the set-up of A-inverse and in the computation of reliability from PEVs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jbg.12470 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!