Aerosol particle number (PNC) and mass concentrations (PMC) were studied in 11 primary schools during the 2017-2018 school years (from September to May) in Vilnius, Lithuania, with the aim to evaluate the main aerosol pollution sources and its levels. Expeditious information on the total aerosol particle concentration over the full range of sizes (from 0.01 to > 1 μm) was estimated using a condensation particle counter (CPC). Particle number and mass concentrations in the size range of 0.3-10 μm were measured and estimated using an optical particle sizer (OPS). The use of aerosol particle size spectra (OPS) in school lodgements facilitated the identification of the main sources of indoor air pollution. The main sources responsible for the elevated levels of indoor PN and PM aerosol concentrations were determined: local canteens in the absence of ventilation (particle concentrations up to 97,500 part/cm (CPC)), the school-grader activity during the lesson breaks (275-586 μg/m), soft furniture and carpets in the classrooms and corridors (~ 200 μg/m), and in some cases (city center) elevated outdoor aerosol pollution levels (16800-18,170 part/cm). Elevated aerosol pollution levels were also due to the occasional sources: construction works during lessons (200-1000 μg/m), scraping the exterior walls of buildings near schools (up to 1600 μg/m), and the use of petrol-powered trimmers during cutting of green plantings (22500-66,400 part/cm (CPC)).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-08093-9DOI Listing

Publication Analysis

Top Keywords

aerosol pollution
16
pollution levels
12
aerosol particle
12
primary schools
8
vilnius lithuania
8
particle number
8
mass concentrations
8
main sources
8
part/cm cpc
8
aerosol
7

Similar Publications

Spatiotemporal Mapping of Ultrafine Particle Fluxes in an Office HVAC System with a Diffusion Charger Sensor Array.

ACS EST Air

January 2025

Lyles School of Civil & Construction Engineering, Purdue University, West Lafayette, Indiana 47907, United States.

Commercial HVAC systems intended to mitigate indoor air pollution are operated based on standards that exclude aerosols with smaller diameters, such as ultrafine particles (UFPs, D ≤ 100 nm), which dominate a large proportion of indoor and outdoor number-based particle size distributions. UFPs generated from occupant activities or infiltrating from the outdoors can be recirculated and accumulate indoors when they are not successfully filtered by an air handling unit. Monitoring UFPs in real occupied environments is vital to understanding these source and mitigation dynamics, but capturing their rapid transience across multiple locations can be challenging due to high-cost instrumentation.

View Article and Find Full Text PDF

Improved Mechanistic Modeling on Reproducing Particle-Bound Mercury in the Marine Atmosphere.

Environ Sci Technol

January 2025

Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China.

Mercury (Hg) is a neurotoxic pollutant that is ubiquitous on the planet and receives global concern because of its adverse health effects. Particle-bound Hg formation in the atmosphere stems mainly from the adsorption of reactive gaseous Hg on aerosol particles, particularly sea salt aerosol. However, the observed comparable abundance of Hg over Hg in the marine atmosphere has not been reproduced by traditional statistics-based schemes, which were constructed by continental observations.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic highlighted the need for improved infectious aerosol concentrations through interventions that reduce the transmission of airborne infections. The aims of this review were to map the existing literature on interventions used to improve infectious aerosol concentrations in hospitals and understand challenges in their implementation.

Methods: We reviewed peer-reviewed articles identified on three databases, MEDLINE, Web of Science, and the Cochrane Library from inception to July 2024.

View Article and Find Full Text PDF

Changes in climate and land-use have significantly increased both the frequency and intensity of wildland fires globally, exacerbating the potential for hazardous impacts on human health. A better understanding of particle exposure concentrations and scenarios is crucial for developing mitigation strategies to reduce the health risks. Here, PM and black carbon (BC) concentrations were monitored during wildland fires between 2022-2024, in fire-prone areas in Catalonia (NE Spain), by means of personal monitors (AirBeam2 and Micro-aethalometers AE51 and MA200).

View Article and Find Full Text PDF

Land cover changes reduce dust aerosol concentrations in Northern China (2000-2020).

Environ Res

January 2025

Henan Key Laboratory of Air Pollution Control and Ecological Security, Henan University, Kaifeng, Henan, 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, Henan, 475004, China. Electronic address:

Dust aerosols significantly impact climate, human health, and ecosystems, but how land cover changes (LCC) influence dust concentrations remains unclear. Here, we applied the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to assess the effects of LCC on dust aerosol concentrations from 2000 to 2020 in northern China. Based on land cover data derived from multi-source satellite remote sensing data, we conducted two simulation scenarios: one incorporating actual annual LCC and another assuming static land cover since 2000.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!