Polyploidy or whole genome duplication is a frequent and recurrent phenomenon in flowering plants that has played a major role in their diversification, adaptation and speciation. The adaptive success of polyploids relates to the different evolutionary fates of duplicated genes. In this study, we explored the impact of the whole genome triplication (WGT) event in the Brassiceae tribe on the genes involved in the self-incompatibility (SI) signalling pathway, a mechanism allowing recognition and rejection of self-pollen in hermaphrodite plants. By taking advantage of the knowledge acquired on this pathway as well as of several reference genomes in Brassicaceae species, we determined copy number of the different genes involved in this pathway and investigated their structural and functional evolutionary dynamics. We could infer that whereas most genes involved in the SI signalling returned to single copies after the WGT event (i.e. ARC1, JDP1, THL1, THL2, Exo70A01) in diploid Brassica species, a few were retained in duplicated (GLO1 and PLDα) or triplicated copies (MLPK). We also carefully studied the gene structure of these latter duplicated genes (including the conservation of functional domains and active sites) and tested their transcription in the stigma to identify which copies seem to be involved in the SI signalling pathway. By taking advantage of these analyses, we then explored the putative origin of a contrasted SI phenotype between two Brassica rapa varieties that have been fully sequenced and shared the same S-allele (S60).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00497-020-00385-x | DOI Listing |
Discov Oncol
January 2025
Western Institute of Digital-Intelligent Medicine, 401329, Chongqing, China.
Background: The metabolism of stearoyl-GPE plays a key role in the liver metastasis of gastric cancer. This investigation delves into the mechanisms underlying the intricate tumor microenvironment (TME) heterogeneity triggered by stearoyl metabolism in gastric cancer with liver metastasis (LMGC), offering novel perspectives for LMGC.
Objective: Utilizing Mendelian randomization, we determined that stearoyl metabolism significantly contributes to the progression of gastric cancer (GC).
Mol Neurobiol
January 2025
Department of Neurology, School of Medicine, Affiliated ZhongDa Hospital, Southeast University, Dingjiaqiao 87, Nanjing, 210009, Jiangsu, China.
The dysregulation of lipid metabolism has been associated with the etiology and progression of the neurological pathology. However, the roles of lipid metabolism and the molecular mechanism in epilepsy and the use of antiepileptic drugs (AEDs) are relatively understudied. Gene expression profiles of GSE143272 from blood samples were included for differential analysis, and the lipid metabolism-related differentially expressed genes (DEGs) were identified.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
Background: Sugarcane is cultivated globally and affected by more than 125 pathogens, which lead to various plant diseases. In recent years, high-throughput sequencing (HTS)-based genome analyses have been broadly adopted for the discovery of both characterized and un-characterized viruses from plant samples. In this study, the HTS data of sugarcane pooled sample retrieved from sequence read archive (SRA) were de novo re-assembled using CLC Genomic Workbench.
View Article and Find Full Text PDFJ Neurol
January 2025
Morehouse School of Medicine, Neuroscience Institute, 720 Westview Drive SW, Atlanta, GA, 30310, USA.
Objectives: The ability to differentiate epileptic- and non-epileptic events is challenging due to a lack of reliable molecular seizure biomarker that provide a retrospective diagnosis. Here, we use next generation sequencing methods on whole blood samples to identify changes in RNA expression following seizures.
Methods: Blood samples were obtained from 32 patients undergoing video electroencephalogram (vEEG) monitoring.
Food Funct
January 2025
Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
, a potential probiotic for use in food and feed production, can exert anti-aging effects in a strain-specific manner. However, the molecular mechanisms underlying its anti-aging effects remain poorly understood. This study explored the effects of WF2020 (WF2020), isolated from Chinese fermented pickles, on longevity and health and investigated the underlying mechanisms in .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!