Metazoan complexity and life-style depend on the bioenergetic potential of mitochondria. However, higher aerobic activity and genetic drift impose strong mutation pressure and risk of irreversible fitness decline in mitochondrial (mt)DNA-encoded genes. Bilaterian mitochondria-encoded tRNA genes, key players in mitochondrial activity, have accumulated mutations at significantly higher rates than their cytoplasmic counterparts, resulting in foreshortened and fragile structures. Here we show that fragility of mt tRNAs coincided with the evolution of bilaterian animals. We demonstrate that bilaterians compensated for this reduced structural complexity in mt tRNAs by sequence-independent induced-fit adaption to the cognate mitochondrial aminoacyl-tRNA synthetase (aaRS). Structural readout by nuclear-encoded aaRS partners relaxed the sequence constraints on mt tRNAs and facilitated accommodation of functionally disruptive mutational insults by cis-acting epistatic compensations. Our results thus suggest that mutational freedom in mt tRNA genes is an adaptation to increased mutation pressure that was associated with the evolution of animal complexity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7033119 | PMC |
http://dx.doi.org/10.1038/s41467-020-14725-y | DOI Listing |
Sci Rep
January 2025
Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Dr. Aiguader 88, Barcelona, 08003, Catalonia, Spain.
Ibiza (Eivissa) is one of the main Balearic Islands in the western Mediterranean. Recent studies have highlighted the genetic distinctiveness of present-day Eivissans within the region and suggested it could be attributed to the genetic drift caused by recent demographic events. Whether this distinctiveness emerged from a differential demographic history, or rather from a bias for sampling in a small geographic region such as Eivissa, remains an open question, together with the understanding of the functional consequences of demography in the island.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Biology Department, Boston University, 24 Cummington Ave., Boston, 02215, USA.
Exons within transcripts are traditionally classified as first, internal or last exons, each governed by different regulatory mechanisms. We recently described the widespread usage of 'hybrid' exons that serve as terminal or internal exons in different transcripts. Here, we employ an interpretable deep learning pipeline to dissect the sequence features governing the co-regulation of transcription initiation and splicing in hybrid exons.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Marine Science, University of Otago, Dunedin, New Zealand.
What little we know about how microbiomes change over the course of host dispersal has been gleaned from simulations or snapshot sampling of microbiomes of hosts undertaking regular, cyclical migrations. These studies suggest that major changes in both microbiome richness and turnover occur in response to long-distance movements, but we do not yet know how rare or sporadic dispersal events for non-migratory organisms might affect the microbiomes of their hosts. Here we directly examine the microbiomes of rafting seaweed, leveraging host genomic analyses, amplicon sequencing, and oceanographic modelling to study the impacts of ecological dispersal of hosts on their microbiomes.
View Article and Find Full Text PDFEur J Radiol
December 2024
Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Austria.
Objectives: To explore texture analysis' ability on T and T relaxation maps to classify liver fibrosis into no-to-mild liver fibrosis (nmF) versus severe fibrosis (sF) group using machine learning algorithms and histology as reference standard.
Materials And Methods: In this single-center study, patients undergoing 3 T MRI who also had histology examination were retrospectively enrolled. SNAPSHOT-FLASH sequence for T1 mapping, radial turbo-spin-echo sequence for T2 mapping and spin-echo echo-planar-imaging magnetic resonance elastography (MRE) sequences were analyzed.
J Magn Reson Imaging
December 2024
Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA.
Background: Three-dimensional MR fingerprinting (3D-MRF) has been increasingly used to assess cartilage degeneration, particularly in the knee joint, by looking into multiple relaxation parameters. A comparable 3D-MRF approach can be adapted to assess cartilage degeneration for the hip joint, with changes to accommodate specific challenges of hip joint imaging.
Purpose: To demonstrate the feasibility and repeatability of 3D-MRF in the bilateral hip jointly we map proton density (PD), T, T, T, and ∆B in clinically feasible scan times.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!