To develop a classification model for accurately discriminating common infectious diseases in Zhejiang province, China.Symptoms and signs, abnormal lab test results, epidemiological features, as well as the incidence rates were treated as predictors, and were collected from the published literature and a national surveillance system of infectious disease. A classification model was established using naïve Bayesian classifier. Dataset from historical outbreaks was applied for model validation, while sensitivity, specificity, accuracy, area under the receiver operating characteristic curve (AUC) and M-index were presented.A total of 146 predictors were included in the classification model, for discriminating 25 common infectious diseases. The sensitivity ranged from 44.44% for hepatitis E to 96.67% for measles. The specificity varied from 96.36% for dengue fever to 100% for 5 diseases. The median of total accuracy was 97.41% (range: 93.85%-99.04%). The AUCs exceeded 0.98 in 11 of 12 diseases, except in dengue fever (0.613). The M-index was 0.960 (95%CI 0.941-0.978).A novel classification model was constructed based on Bayesian approach to discriminate common infectious diseases in Zhejiang province, China. After entering symptoms and signs, abnormal lab test results, epidemiological features and city of disease origin, an output list of possible diseases ranked according to the calculated probabilities can be provided. The discrimination performance was reasonably good, making it useful in epidemiological applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7034623 | PMC |
http://dx.doi.org/10.1097/MD.0000000000019218 | DOI Listing |
Int J Med Inform
January 2025
Department of Computer Science and Artificial Intelligence, University of Udine, 33100, Italy.
Background: Segmentation models for clinical data experience severe performance degradation when trained on a single client from one domain and distributed to other clients from different domain. Federated Learning (FL) provides a solution by enabling multi-party collaborative learning without compromising the confidentiality of clients' private data.
Methods: In this paper, we propose a cross-domain FL method for Weakly Supervised Semantic Segmentation (FL-W3S) of white blood cells in microscopic images.
Medicine (Baltimore)
January 2025
Department of Otolaryngology, Hangzhou Red Cross Hospital (Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine), Hangzhou, Zhejiang, China.
T-helper 17 (Th17) cells significantly influence the onset and advancement of malignancies. This study endeavor focused on delineating molecular classifications and developing a prognostic signature grounded in Th17 cell differentiation-related genes (TCDRGs) using machine learning algorithms in head and neck squamous cell carcinoma (HNSCC). A consensus clustering approach was applied to The Cancer Genome Atlas-HNSCC cohort based on TCDRGs, followed by an examination of differential gene expression using the limma package.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Science and Engineering, School of Computer Science, University of Hull, Hull, United Kingdom.
Mold defects pose a significant risk to the preservation of valuable fine art paintings, typically arising from fungal growth in humid environments. This paper presents a novel approach for detecting and categorizing mold defects in fine art paintings. The technique leverages a feature extraction method called Derivative Level Thresholding to pinpoint suspicious regions within an image.
View Article and Find Full Text PDFPLoS One
January 2025
College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, RP China.
This study develops an innovative method for analyzing and clustering tonal trends in Chinese Yue Opera to identify different vocal styles accurately. Linear interpolation is applied to process the time series data of vocal melodies, addressing inconsistent feature dimensions. The second-order difference method extracts tonal trend features.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
In human activity-recognition scenarios, including head and entire body pose and orientations, recognizing the pose and direction of a pedestrian is considered a complex problem. A person may be traveling in one sideway while focusing his attention on another side. It is occasionally desirable to analyze such orientation estimates using computer-vision tools for automated analysis of pedestrian behavior and intention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!