AI Article Synopsis

  • High-CHK1 activity is prevalent in glioblastoma (GBM) and may influence tumor development and patient survival, but its exact role is unclear.
  • Research shows that the levels of CHK1 and the oncogene CIP2A are independent indicators of poorer survival rates in glioma patients.
  • CHK1 and pSTAT3 work together to regulate CIP2A expression, and disrupting this pathway could slow down GBM growth, suggesting CIP2A as a potential target for new cancer therapies.

Article Abstract

High-constitutive activity of the DNA damage response protein checkpoint kinase 1 (CHK1) has been shown in glioblastoma (GBM) cell lines and in tissue sections. However, whether constitutive activation and overexpression of CHK1 in GBM plays a functional role in tumorigenesis or has prognostic significance is not known. We interrogated multiple glioma patient cohorts for expression levels of CHK1 and the oncogene cancerous inhibitor of protein phosphatase 2A (CIP2A), a known target of high-CHK1 activity, and examined the relationship between these two proteins in GBM. Expression levels of CHK1 and CIP2A were independent predictors for reduced overall survival across multiple glioma patient cohorts. Using siRNA and pharmacologic inhibitors we evaluated the impact of their depletion using both and models and sought a mechanistic explanation for high CIP2A in the presence of high-CHK1 levels in GBM and show that; (i) CHK1 and pSTAT3 positively regulate CIP2A gene expression; (ii) pSTAT3 and CIP2A form a recursively wired transcriptional circuit; and (iii) perturbing CIP2A expression induces GBM cell senescence and retards tumor growth and . Taken together, we have identified an oncogenic transcriptional circuit in GBM that can be destabilized by targeting CIP2A. IMPLICATIONS: High expression of CIP2A in gliomas is maintained by a CHK1-dependent pSTAT3-CIP2A recursive loop; interrupting CIP2A induces cell senescence and slows GBM growth adding impetus to the development of CIP2A as an anticancer drug target.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1541-7786.MCR-19-0934DOI Listing

Publication Analysis

Top Keywords

cip2a
10
gbm cell
8
multiple glioma
8
glioma patient
8
patient cohorts
8
expression levels
8
levels chk1
8
transcriptional circuit
8
cell senescence
8
gbm
7

Similar Publications

Tenuigenin inhibits osteosarcoma growth via CIP2A/PP2A/NF-κB axis.

Cancer Chemother Pharmacol

December 2024

Department of Orthopedics & Soft Tissue, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China.

Background: Polygala tenuifolia and its active components have been revealed to possess anti-tumor activities. However, the role of Tenuigenin (TEN), a bioactive ingredient from Polygala tenuifolia, in tumors such as osteosarcoma (OS) remains unclear. The present research intended to explore the efficacy and underlying mechanism of TEN on OS.

View Article and Find Full Text PDF

Double-strand breaks (DSBs) are a formidable threat to genome integrity, potentially leading to cancer and various genetic diseases. The prolonged lifespan of mammalian oocytes increases their susceptibility to DNA damage over time. While somatic cells suppress DSB repair during mitosis, oocytes exhibit a remarkable capacity to repair DSBs during meiotic maturation.

View Article and Find Full Text PDF

CIP2A inhibitors TD52 and Ethoxysanguinarine promote macrophage autophagy and alleviates acute pancreatitis by modulating the AKT-mTOR pathway.

Phytomedicine

November 2024

Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China. Electronic address:

Background: Acute pancreatitis (AP) is a prevalent and serious condition within the digestive system, with approximately 20 % to 30 % of cases advancing to severe acute pancreatitis (SAP). During the initial phases of SAP, macrophages are activated in response to the substantial amounts of acinar cell contents and damage-associated molecular patterns (DAMPs) resulting from acinar cell destruction. Subsequently, activated macrophages release a significant array of pro-inflammatory factors that exacerbate the progression of SAP.

View Article and Find Full Text PDF

Oncogenic mutations in KRAS are present in ~95% of patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) and are considered the initiating event of pancreatic intraepithelial neoplasia (PanIN) precursor lesions. While it is well established that KRAS mutations drive the activation of oncogenic kinase cascades during pancreatic oncogenesis, the effects of oncogenic KRAS signaling on regulation of phosphatases during this process is not fully appreciated. Protein Phosphatase 2A (PP2A) has been implicated in suppressing KRAS-driven cellular transformation and low PP2A activity is observed in PDAC cells compared to non-transformed cells, suggesting that suppression of PP2A activity is an important step in the overall development of PDAC.

View Article and Find Full Text PDF

PP2A activation overcomes leptomeningeal dissemination in group 3 medulloblastoma.

J Biol Chem

November 2024

Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA. Electronic address:

Leptomeningeal dissemination (LMD) is the primary cause of treatment failure in children with group 3 medulloblastoma (MB). Building on our previous work on protein phosphatase 2A (PP2A) activation in MB, here we present preclinical and molecular data on the effects of two novel classes of PP2A activators on disease processes of LMD in group 3 MB. The PP2A activators used in this study are ATUX-6156 and ATUX-6954 (diarylmethylcycloamine sulfonylureas), and ATUX-1215 and ATUX-5800 (diarylmethyl-4-aminotetrahydropyran-sulfonamides).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!