Single-Shot Structured Light Sensor for 3D Dense and Dynamic Reconstruction.

Sensors (Basel)

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Published: February 2020

Structured light (SL) has a trade-off between acquisition time and spatial resolution. Temporally coded SL can produce a 3D reconstruction with high density, yet it is not applicable to dynamic reconstruction. On the contrary, spatially coded SL works with a single shot, but it can only achieve sparse reconstruction. This paper aims to achieve accurate 3D dense and dynamic reconstruction at the same time. A speckle-based SL sensor is presented, which consists of two cameras and a diffractive optical element (DOE) projector. The two cameras record images synchronously. First, a speckle pattern was elaborately designed and projected. Second, a high-accuracy calibration method was proposed to calibrate the system; meanwhile, the stereo images were accurately aligned by developing an optimized epipolar rectification algorithm. Then, an improved semi-global matching (SGM) algorithm was proposed to improve the correctness of the stereo matching, through which a high-quality depth map was achieved. Finally, dense point clouds could be recovered from the depth map. The DOE projector was designed with a size of 8 mm × 8 mm. The baseline between stereo cameras was controlled to be below 50 mm. Experimental results validated the effectiveness of the proposed algorithm. Compared with some other single-shot 3D systems, our system displayed a better performance. At close range, such as 0.4 m, our system could achieve submillimeter accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070572PMC
http://dx.doi.org/10.3390/s20041094DOI Listing

Publication Analysis

Top Keywords

dynamic reconstruction
12
structured light
8
dense dynamic
8
doe projector
8
depth map
8
reconstruction
5
single-shot structured
4
light sensor
4
sensor dense
4
reconstruction structured
4

Similar Publications

A superresolution (SR) method for the reconstruction of Navier-Stokes (NS) flows from noisy observations is presented. In the SR method, first the observation data are averaged over a coarse grid to reduce the noise at the expense of losing resolution and, then, a dynamic observer is employed to reconstruct the flow field by reversing back the lost information. We provide a theoretical analysis, which indicates a chaos synchronization of the SR observer with the reference NS flow.

View Article and Find Full Text PDF

Background: Stereotactic radiosurgery (SRS) is widely used for managing brain metastases (BMs), but an adverse effect, radionecrosis, complicates post-SRS management. Differentiating radionecrosis from tumor recurrence non-invasively remains a major clinical challenge, as conventional imaging techniques often necessitate surgical biopsy for accurate diagnosis. Machine learning and deep learning models have shown potential in distinguishing radionecrosis from tumor recurrence.

View Article and Find Full Text PDF

Male reproductive proteins frequently evolve rapidly in animals, potentially due to adaptive evolution driven by sperm competition, polyspermy avoidance, or pathogen defense. Alternatively, elevated rates of protein change may be due to relaxed constraint. The prostate-specific protease KLK3 has experienced dynamic evolution since its origin stemming from a gene duplication in the ancestor of all Old World primates, with instances of rapid evolution, stasis, and pseudogenization.

View Article and Find Full Text PDF

Antigen processing and presentation via major histocompatibility complex (MHC) molecules are central to immune surveillance. Yet, quantifying the dynamic activity of MHC class I and II antigen presentation remains a critical challenge, particularly in diseases like cancer, infection and autoimmunity where these pathways are often disrupted. Current methods fall short in providing precise, sample-specific insights into antigen presentation, limiting our understanding of immune evasion and therapeutic responses.

View Article and Find Full Text PDF

Purpose: To propose a domain-conditioned and temporal-guided diffusion modeling method, termed dynamic Diffusion Modeling (dDiMo), for accelerated dynamic MRI reconstruction, enabling diffusion process to characterize spatiotemporal information for time-resolved multi-coil Cartesian and non-Cartesian data.

Methods: The dDiMo framework integrates temporal information from time-resolved dimensions, allowing for the concurrent capture of intra-frame spatial features and inter-frame temporal dynamics in diffusion modeling. It employs additional spatiotemporal ($x$-$t$) and self-consistent frequency-temporal ($k$-$t$) priors to guide the diffusion process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!