Organic fertilizer is a major carrier that stores and transmits antibiotic resistance genes (ARGs). In the environment, due to the application of organic fertilizers in agriculture, the increasing diversity and abundance of ARGs poses a potential threat to human health and environmental safety. In this paper, the microbial community structure and ARGs in different types of organic fertilizer treated with composting were examined. We found that the abundance and diversity of ARGs in earthworm cast organic fertilizer were the lowest and the highest in chicken manure organic fertilizer. Interestingly, the abundance and diversity of ARGs, especially beta-lactam resistance genes, sulfonamide resistance genes, and macrolide-lincosamide-streptogramin B (MLSB) resistance genes, in organic fertilizers were reduced significantly, while composting caused no significant change in mobile genetic elements (MGEs), where antibiotic deactivation and the use of efflux pumps were the two most dominant mechanisms. It was clear that removal of ARGs became more efficient with increasing reduction in the bacterial abundances and diversity of potential ARG hosts, and integron-mediated horizontal gene transfers (HGTs) played an important role in the proliferation of most ARG types. Therefore, the reduction in ARGs was mainly driven by changes in bacterial community composition caused by composting. Furthermore, rather than HGTs, the diversity and abundance of bacterial communities affected by compost physical and chemical properties were the main drivers shaping and altering the abundance and diversity of ARGs, which was indicated by a correlation analysis of these properties, antibiotic residues, microbial community structure, and ARGs. In general, high-temperature composting effectively removed antibiotic residues and ARGs from these organic fertilizers; however, it cannot prevent the proliferation of MGEs. The insights gained from these results may be of assistance in the safe and rational use of organic fertilizers by indicating the changes in microbial community structure and ARGs in different types of organic fertilizer treated with composting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074733 | PMC |
http://dx.doi.org/10.3390/microorganisms8020268 | DOI Listing |
ACS Nano
December 2024
School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China.
An ideal green leaf-deposited pesticide formulation should offer advantages such as good water dispersibility, strong foliar affinity, sustained or controlled release of active ingredients, photostability and rain-fastness, minimal nontarget toxicity, use of nontoxic organic solvents, and degradable adjuvants. In line with this objective, we present green preparation of a colloidal pesticide formulation using optimized lysine-derived carbon dots (LysCDs)-modified CaCO (LysCDs/CaCO) particles as the carrier and abamectin (Abm) as the active ingredient. The loading capacity of abamectin in this colloidal pesticide (LysCDs/CaCO/Abm) is 1.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Advanced Materials, Central Metallurgical R & D Institute (CMRDI), P.O. box 87, Helwan, Cairo, Egypt.
An overview of various industrial and bio-applications of unavoidable bio-waste materials reported in the literature over the last 25 years is presented in this review. Calcium-based food wastes or "unavoidable bio-wastes" are hybrid bio-composite materials, consisting of a softer organic matrix surrounding a stiff mineralized ceramic phase. A wide range of different bio-wastes that are already in use or are investigated for multipurpose applications are presented.
View Article and Find Full Text PDFJ Environ Manage
December 2024
China National Bamboo Research Center, Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, Hangzhou, Zhejiang, 310012, China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, Zhejiang, 310012, China.
Bamboo forests are crucial ecosystems and provide essential ecological and economic services in both tropical and subtropical regions. Soil phosphorus (P), a vital nutrient for plant growth, is fundamental to the productivity and health of bamboo forests. However, the microbial mechanisms through which management practices affect soil P processes in bamboo forests remain poorly understood.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
Promoting soil multifunctionality is pivotal for maintaining agricultural productivity and sustainable agriculture, especially with the increasing global population and food demand. The effectiveness of different agricultural practices in enhancing soil multifunctionality and how the combination can maximize soil multifunctionality remains unknown. This study aimed to investigate the different impacts of rotation (paddy-upland rotation and dryland rotation) combined with fertilization (chemical fertilizer and manure) on soil multifunctionality, microbial community structure, and microbial networks.
View Article and Find Full Text PDFMicrobiol Res
December 2024
Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, College of Life and Health Science, Anhui Science and Technology University, Chuzhou 233100, China; Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
Intercropping is emerging as a sustainable strategy to manage soil-borne diseases, yet the underlying mechanisms remain largely elusive. Here, we investigated how intercropping chrysanthemum (Chrysanthemum morifolium) with ginger (Zingiber officinale) suppressed Fusarium wilt and influenced the associated rhizo-microbiome. Chrysanthemum plants in intercropping systems exhibited a marked reduction in wilt severity and greater biomass compared to those grown in monoculture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!