Group 2 Innate Lymphoid Cells: Central Players in a Recurring Theme of Repair and Regeneration.

Int J Mol Sci

Department of Medical Genetics and School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, University of British Columbia, The Biomedical Research Centre, 2222 Health Sciences Mall, Vancouver, BC V6T 2B9, Canada.

Published: February 2020

Innate lymphoid cells (ILCs) are recently discovered innate counterparts to the well-established T helper cell subsets and are most abundant at barrier surfaces, where they participate in tissue homeostasis and inflammatory responses against invading pathogens. Group 2 innate lymphoid cells (ILC2s) share cytokine and transcription factor expression profiles with type-2 helper T cells and are primarily associated with immune responses against allergens and helminth infections. Emerging data, however, suggests that ILC2s are also key regulators in other inflammatory settings; both in a beneficial context, such as the establishment of neonatal immunity, tissue repair, and homeostasis, and in the context of pathological tissue damage and disease, such as fibrosis development. This review focuses on the interactions of ILC2s with stromal cells, eosinophils, macrophages, and T regulatory cells that are common to the different settings in which type-2 immunity has been explored. We further discuss how an understanding of these interactions can reveal new avenues of therapeutic tissue regeneration, where the role of ILC2s is yet to be fully established.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072936PMC
http://dx.doi.org/10.3390/ijms21041350DOI Listing

Publication Analysis

Top Keywords

innate lymphoid
12
lymphoid cells
12
group innate
8
cells
6
cells central
4
central players
4
players recurring
4
recurring theme
4
theme repair
4
repair regeneration
4

Similar Publications

Objectives: Innate lymphoid cells (ILCs) are tissue-resident lymphocytes that have vital roles in activating further immune responses. However, due to their tumor-induced diversity, we decided to examine ILCs, T cells, and the associated cytokines in mouse models of breast cancer.

Materials And Methods: 4T1 and MC4-L2 cells were used to induce triple-negative and hormone-receptor-positive breast cancer, respectively.

View Article and Find Full Text PDF

Background: Cholangiocarcinoma is a challenging malignancy with limited responses to conventional therapies, particularly immune checkpoint inhibitor therapy. Tumor-infiltrating lymphocytes (TILs) and tertiary lymphoid structures (TLSs) are key components of the tumor microenvironment (TME) and have been implicated in the immune response to cancer. However, the role and difference of TLSs and TILs in patients with cholangiocarcinoma remains unclear.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are generated in all cells. Systemic administration of allogenic EVs derived from epithelial and mesenchymal cells has been shown to be safe, despite carrying an array of functional molecules, including thousands of proteins. To address whether epithelial cell-derived EVs can be modified to acquire the capacity to induce an immune response, we engineered 293T EVs to harbor the immunomodulatory molecules CD80, OX40L, and PD-L1.

View Article and Find Full Text PDF

T-betILC3 in peripheral blood is increased in the ankylosing spondylitis with high disease activity.

Heliyon

January 2025

Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, China.

Objective: Ankylosing spondylitis (AS) is a chronic autoimmune disease characterized by systemic inflammation, often resulting in fusion of the spine and peripheral joints. This study aimed to investigate the role of innate lymphoid cells (ILCs) in AS patients with high disease activity.

Methods: Blood samples were collected from healthy controls and AS patients categorized by high or low disease activity.

View Article and Find Full Text PDF

Characterizing tumor-infiltrating group 1 innate lymphoid cells in PyMT breast tumors.

Methods Cell Biol

January 2025

Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Arnie Charbonneau Cancer Research Institute, Calgary, AB, Canada. Electronic address:

Breast cancer is the most common cancer in women and continues to have a significant impact in cancer-associated deaths worldwide. Investigating the complex roles of infiltrating immune subsets within the tumor microenvironment (TME) will enable a better understanding of disease progression and reveal novel therapeutic strategies for patients with breast cancer. The mammary-specific expression of polyomavirus middle T oncoprotein (MMTV-PyMT) was first established in 1992 by William Muller and is the most commonly used genetically engineered mouse model (GEMM) for breast cancer research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!