Synthesis of ZnO-NPs Using a Leaf Extract and Proving its Efficiency as an Inhibitor of Carbon Steel Corrosion.

Materials (Basel)

Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.

Published: February 2020

This paper studies the use of zinc oxide nanoparticles (ZnO-NPs) synthesized using an extract of leaf and expired ZnCl, as efficient inhibitors of carbon steel corrosion in a 1 M HCl solution. The synthesized ZnO-NPs were characterized by Fourier-transform infrared (FTIR) and UV-Vis spectroscopy analysis. The corrosion inhibition of carbon steel in 1 M HCl was also investigated through potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and the determination of weight loss. The results show that the efficiency of the prevention increased when the concentration of ZnO-NPs was increased to 91%, and that the inhibition efficiency was still high (more than 89%) despite decreasing at high temperatures, acting as a mixed-type inhibitor. A sample of carbon steel with a protective layer of inhibitor on top was observed during immersion in 1 M HCl for 20 h; an increase in the charge transfer resistance (R) and stability of the inhibitor could be observed after 6 h. Adsorption isotherm models demonstrated that the inhibitor adsorption mechanism on the carbon steel surface followed Langmuir rather than Freundlich and Temkin behaviors. The thermodynamic parameters showed that the adsorption process is one of mixed, spontaneous, and exothermic adsorption. The results illustrate that the ZnO-NPs were a strong inhibitor of carbon steel corrosion in acid medium. The results of scanning electron microscopy (SEM) images showed that the ZnO-NPs formed a good protective film on the carbon steel surface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079658PMC
http://dx.doi.org/10.3390/ma13040890DOI Listing

Publication Analysis

Top Keywords

carbon steel
28
steel corrosion
12
inhibitor carbon
8
steel surface
8
carbon
7
steel
7
inhibitor
6
zno-nps
5
synthesis zno-nps
4
zno-nps leaf
4

Similar Publications

Hydrogen-assisted (HA) fatigue crack growth (FCG) occurs in ferritic steels, wherein H-dislocation interaction plays a vital role. We aim to model the HAFCG mechanism based on the within the crack tip zone. Our modeling framework is as follows: H is condensed into crack tip and trapped by dislocations; these H significantly decrease dislocation mobility; stress relief via crack blunting is suppressed; localized brittle fracture triggers HAFCG.

View Article and Find Full Text PDF

LiMnO Nanoparticles In Situ Embedded in Carbon Networks for Lithium Extraction from Brine via Hybrid Capacitive Deionization.

ACS Appl Mater Interfaces

January 2025

Innovation Institute of Carbon Neutrality, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.

Highly selective and efficient extraction of lithium from brine is considered a promising strategy to alleviate the imbalance between supply and demand of lithium resources. However, it is still challenging for lithium ions (Li) recovery from brine. In this work, LiMnO nanoparticles embedded in situ in carbon networks (LMO-C) derived from metal-organic frameworks by incomplete calcination have been developed for lithium extraction from brine via the hybrid capacitive deionization (HCDI) process.

View Article and Find Full Text PDF

Pathogen bacteria appear and survive on various surfaces made of steel or glass. The existence of these bacteria in different forms causes significant problems in healthcare facilities and society. Therefore, the surface engineering of highly potent antimicrobial coatings is highly important in the 21st century, a period that began with a series of epidemics.

View Article and Find Full Text PDF

Sulfidogenic bacteria cause numerous issues in the oil industry since they produce sulfide, corroding steel equipment, reducing oil quality, and worsening the environmental conditions in oil fields. The purpose of this work was to isolate and taxonomically identify the sulfidogenic bacteria responsible for the corrosion of steel equipment at the Karazhanbas oil field (Kazakhstan). In this study, we characterized five sulfidogenic strains of the genera , , and isolated from the formation water of the Karazhanbas oil field (Kazakhstan).

View Article and Find Full Text PDF

Diamond grinding wheels have been widely used to remove the residual features of cast parts, such as parting lines and pouring risers. However, diamond grains are prone to chemical wear as a result of their strong interaction with ferrous metals. To mitigate this wear, this study proposes the use of a novel water-based hexagonal boron nitride (hBN) as a minimum quantity lubrication (MQL) during the grinding of cast steel and conducted the grinding experiment and molecular dynamics simulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!