DECM: A Discrete Element for Multiscale Modeling of Composite Materials Using the Cell Method.

Materials (Basel)

Department of Civil, Environmental and Materials Engineering-DICAM, Alma Mater Studiorum Università di Bologna, 40136 Bologna, Italy.

Published: February 2020

This paper presents a new numerical method for multiscale modeling of composite materials. The new numerical model, called DECM, consists of a DEM (Discrete Element Method) approach of the Cell Method (CM) and combines the main features of both the DEM and the CM. In particular, it offers the same degree of detail as the CM, on the microscale, and manages the discrete elements individually such as the DEM-allowing finite displacements and rotations-on the macroscale. Moreover, the DECM is able to activate crack propagation until complete detachment and automatically recognizes new contacts. Unlike other DEM approaches for modeling failure mechanisms in continuous media, the DECM does not require prior knowledge of the failure position. Furthermore, the DECM solves the problems in the space domain directly. Therefore, it does not require any dynamic relaxation techniques to obtain the static solution. For the sake of example, the paper shows the results offered by the DECM for axial and shear loading of a composite two-dimensional domain with periodic round inclusions. The paper also offers some insights into how the inclusions modify the stress field in composite continua.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079655PMC
http://dx.doi.org/10.3390/ma13040880DOI Listing

Publication Analysis

Top Keywords

discrete element
8
multiscale modeling
8
modeling composite
8
composite materials
8
cell method
8
decm
6
decm discrete
4
element multiscale
4
composite
4
materials cell
4

Similar Publications

RIS-Aided coexistence in wireless networks using angular information.

Sci Rep

December 2024

Wireless@VT, Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, 24061, VA, USA.

Owing to the ability of reconfigurable intelligent surfaces (RISs) to control the propagation environment in their vicinity, they have emerged as an appealing solution to enhance the performance of next-generation wireless networks. While the effectiveness of RISs with complete channel state information (CSI) is well-documented, their performance with limited user information remains less explored. This is particularly pronounced when an RIS interferes with nodes in a potentially non-cooperating network, making CSI acquisition challenging.

View Article and Find Full Text PDF

Basalt, which is a geological medium used for engineering construction in Southwest China, contains defect structures at various scales. In particular, the widespread presence of mesoscale hidden joints significantly affects the mechanical properties of basalt and the stability of engineering structures. However, research in this specific subject has been limited.

View Article and Find Full Text PDF

Motor output results from the coordinated activity of neural circuits distributed across multiple brain regions that convey information to the spinal cord via descending motor pathways. Yet the organizational logic through which supraspinal systems target discrete components of spinal motor circuits remains unclear. Here, using viral transsynaptic tracing along with serial two-photon tomography, we have generated a whole-brain map of monosynaptic inputs to spinal V1 interneurons, a major inhibitory population involved in motor control.

View Article and Find Full Text PDF

Image-to-mesh conversion method for multi-tissue medical image computing simulations.

Eng Comput

December 2024

Center for Real-Time Computing, Department of Computer Science, Old Dominion University, Norfolk, VA, United States of America.

Converting a three-dimensional medical image into a 3D mesh that satisfies both the quality and fidelity constraints of predictive simulations and image-guided surgical procedures remains a critical problem. Presented is an image-to-mesh conversion method called CBC3D. It first discretizes a segmented image by generating an adaptive Body-Centered Cubic (BCC) mesh of high-quality elements.

View Article and Find Full Text PDF

Impact of Potassium Doping on a Two-Dimensional Kagome Organic Framework on Ag(111).

J Phys Chem Lett

December 2024

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China.

Alkali element doping has significant physical implications for two-dimensional materials, primarily by tuning the electronic structure and carrier concentration. It can enhance interface electronic interactions, providing opportunities for effective charge transfer at metal-organic interfaces. In this work, we investigated the effects of gradually increasing the level of K doping on the lattice structure and electronic properties of an organometallic coordinated Kagome lattice on a Ag(111) surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!