Two often-studied forms of uncertain decision-making (DM) are risky-DM (outcome probabilities known) and ambiguous-DM (outcome probabilities unknown). While DM in general is associated with activation of several brain regions, previous neuroimaging efforts suggest a dissociation between activity linked with risky and ambiguous choices. However, the common and distinct neurobiological correlates associated with risky- and ambiguous-DM, as well as their specificity when compared to perceptual-DM (as a 'control condition'), remains to be clarified. We conducted multiple meta-analyses on neuroimaging results from 151 studies to characterize common and domain-specific brain activity during risky-, ambiguous-, and perceptual-DM. When considering all DM tasks, convergent activity was observed in brain regions considered to be consituents of the canonical salience, valuation, and executive control networks. When considering subgroups of studies, risky-DM (vs. perceptual-DM) was linked with convergent activity in the striatum and anterior cingulate cortex (ACC), regions associated with reward-related processes (determined by objective functional decoding). When considering ambiguous-DM (vs. perceptual-DM), activity convergence was observed in the lateral prefrontal cortex and insula, regions implicated in affectively-neutral mental processes (e.g., cognitive control and behavioral responding; determined by functional decoding). An exploratory meta-analysis comparing brain activity between substance users and non-users during risky-DM identified reduced convergent activity among users in the striatum, cingulate, and thalamus. Taken together, these findings suggest a dissociation of brain regions linked with risky- and ambiguous-DM reflecting possible differential functionality and highlight brain alterations potentially contributing to poor decision-making in the context of substance use disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7127964PMC
http://dx.doi.org/10.1016/j.drugalcdep.2020.107884DOI Listing

Publication Analysis

Top Keywords

brain activity
12
brain regions
12
convergent activity
12
common distinct
8
activity
8
risky ambiguous
8
outcome probabilities
8
risky- ambiguous-dm
8
functional decoding
8
brain
7

Similar Publications

Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) typically respond to light stimulation over their spatially restricted receptive field. Using large-scale recordings in the mouse retina, we show that a subset of non- direction-selective (DS) RGCs exhibit asymmetric activity, selective to motion direction, in response to a stimulus crossing an area far beyond the classic receptive field. The extraclassical response arises via inputs from an asymmetric distal zone and is enhanced by desensitization mechanisms and an inherent DS component, creating a network of neurons responding to motion toward the optic disc.

View Article and Find Full Text PDF

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.

View Article and Find Full Text PDF

Oppositional and competitive instigation of hippocampal synaptic plasticity by the VTA and locus coeruleus.

Proc Natl Acad Sci U S A

January 2025

Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany.

The novelty, saliency, and valency of ongoing experiences potently influence the firing rate of the ventral tegmental area (VTA) and the locus coeruleus (LC). Associative experience, in turn, is recorded into memory by means of hippocampal synaptic plasticity that is regulated by noradrenaline sourced from the LC, and dopamine, sourced from both the VTA and LC. Two persistent forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD) support the encoding of different kinds of spatial experience.

View Article and Find Full Text PDF

MicroRNA-204-5p Deficiency within the vmPFC Region Contributes to Neuroinflammation and Behavioral Disorders via the JAK2/STAT3 Signaling Pathway in Rats.

Adv Sci (Weinh)

January 2025

Key Laboratory of Mental Disorders, The Second Hospital of Shandong University, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.

Major depressive disorder (MDD) is usually considered associate with immune inflammation and synaptic injury within specific brain regions. However, the molecular mechanisms underlying the neural deterioration resulting in depression remain unclear. Here, it is found that miR-204-5p is markedly downregulated in the ventromedial prefrontal cortex (vmPFC) in a chronic unpredictable mild stress (CUMS) induce rat model of depression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!