Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Benz(a)anthracene (BaA) is a polycyclic aromatic hydrocarbons (PAHs), that belongs to a group of carcinogenic and mutagenic persistent organic pollutants found in a variety of ecological habitats. In this study, the efficient biodegradation of BaA by a green alga Chlamydomonas reinhardtii (C. reinhardtii) CC-503 was investigated. The results showed that the growth of C. reinhardtii was hardly affected with an initial concentration of 10 mg/L, but was inhibited significantly under higher concentrations of BaA (>30 mg/L) (p < 0.05). We demonstrated that the relatively high concentration of 10 mg/L BaA was degraded completely in 11 days, which indicated that C. reinhardtii had an efficient degradation system. During the degradation, the intermediate metabolites were determined to be isomeric phenanthrene or anthracene, 2,6-diisopropylnaphthalene, 1,3-diisopropylnaphthalene, 1,7-diisopropylnaphthalene, and cyclohexanol. The enzymes involved in the degradation included the homogentisate 1,2-dioxygenase (HGD), the carboxymethylenebutenolidase, the ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the ubiquinol oxidase. The respective genes encoding these proteins were significantly up-regulated ranging from 3.17 fold to 13.03 fold and the activity of enzymes, such as HGD and Rubisco, was significantly induced up to 4.53 and 1.46 fold (p < 0.05), during the BaA metabolism. This efficient degradation ability suggests that the green alga C. reinhardtii CC-503 may be a sustainable candidate for PAHs remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.126097 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!