Soil freeze-thaw cycles (FTCs) change the physical and chemical properties of soils; however, information is limited about the consequences for heavy metal sorption and desorption. Lead (Pb) sorption isotherms and successive desorption tests were measured for three soils from North China (Chestnut, Lou and Black), following multiple freeze-thaw cycles (0, 1, 3, 6 and 9 FTCs) of -5 °C for 12 h and then +5 °C for 12 h. Lead adsorption dominated the sorption processes for all soils, and sorption capacity increased with additional FTCs. The Freundlich affinity parameter of soils for Pb sorption (i.e. A; L mmol kg), was linearly correlated with carbonate content for soils with multiple FTCs. The effects of FTCs on lead adsorption may be more dependent on carbonate and clay contents than organic matter (OM), cation exchange capacity (CEC) and amorphous iron content. Repeated FTCs increased the pH of soil solutions at applied Pb concentrations >1.4 mmol L, which could facilitate formation of inner-sphere complexes of Pb in studied soils. Cation exchange, a weak association, could occupy specific adsorption sites with increasing Pb doses in soils and it can also be facilitated by FTCs. Our results demonstrate the great potential for increasing Pb immobilization with repeated FTCs, by facilitating the formation of both inner-sphere and outer-sphere complexes. Hence, these findings provide useful information on Pb immobilization in contaminated soils that undergo frequent FTCs and offer an additional insight into predicting Pb behavior in cold and freezing environments like the polar regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2020.110288 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!