Background and Purpose- Loss of cerebral autoregulation in the acute phase of ischemic stroke leaves patients vulnerable to blood pressure (BP) changes. Effective BP management after endovascular thrombectomy may protect the brain from hypoperfusion or hyperperfusion. In this observational study, we compared personalized, autoregulation-based BP targets to static systolic BP thresholds. Methods- We prospectively enrolled 90 patients undergoing endovascular thrombectomy for stroke. Autoregulatory function was continuously measured by interrogating changes in near-infrared spectroscopy-derived tissue oxygenation (a cerebral blood flow surrogate) in response to changes in mean arterial pressure. The resulting autoregulatory index was used to trend the BP range at which autoregulation was most preserved. Percent time that mean arterial pressure exceeded the upper limit of autoregulation or decreased below the lower limit of autoregulation was calculated for each patient. Time above fixed systolic BP thresholds was computed in a similar fashion. Functional outcome was measured with the modified Rankin Scale at 90 days. Results- Personalized limits of autoregulation were successfully computed in all 90 patients (age 71.6±16.2, 47% female, mean National Institutes of Health Stroke Scale 13.9±5.7, monitoring time 28.0±18.4 hours). Percent time with mean arterial pressure above the upper limit of autoregulation associated with worse 90-day outcomes (odds ratio per 10% 1.84 [95% CI, 1.3-2.7] =0.002), and patients with hemorrhagic transformation spent more time above the upper limit of autoregulation (10.9% versus 16.0%, =0.042). Although there appeared to be a nonsignificant trend towards worse outcome with increasing time above systolic BP thresholds of 140 mm Hg and 160 mm Hg, the effect sizes were smaller compared with the personalized approach. Conclusions- Noninvasive determination of personalized BP thresholds for stroke patients is feasible. Deviation from these limits may increase risk of further brain injury and poor functional outcome. This approach may present a better strategy compared with the classical approach of maintaining systolic BP below a predetermined value, though a randomized trial is needed to determine the optimal approach for hemodynamic management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7050651PMC
http://dx.doi.org/10.1161/STROKEAHA.119.026596DOI Listing

Publication Analysis

Top Keywords

limit autoregulation
16
systolic thresholds
12
arterial pressure
12
upper limit
12
blood pressure
8
ischemic stroke
8
endovascular thrombectomy
8
compared personalized
8
percent time
8
time arterial
8

Similar Publications

Weight cycling exacerbates glucose intolerance and hepatic triglyceride storage in mice with a history of chronic high fat diet exposure.

J Transl Med

January 2025

Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.

Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.

View Article and Find Full Text PDF

Transcriptional regulation of adipocyte lipolysis by IRF2BP2.

Sci Adv

January 2025

Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Adipocyte lipolysis controls systemic energy levels and metabolic homeostasis. Lipolysis is regulated by posttranslational modifications of key lipolytic enzymes. However, less is known about the transcriptional mechanisms that regulate lipolysis.

View Article and Find Full Text PDF

Background: Astrocytes are a numerous and diverse glial subtype specialised to carry out distinct roles involving maintaining homeostasis and effective functioning of the nervous system. To do so effectively, they respond to and secrete various proteins. In addition, astrocytes have been linked to Alzheimer's disease (AD), where they are believed to become reactive and contribute to neuroinflammation.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by neuronal dysfunction leading to decreased memory and cognitive function. AD research has largely focused on the potential pathogenic role of two disease hallmarks: amyloid beta and phosphorylated tau. However, pharmacological interventions targeting these disease hallmarks have met with limited clinical trial success.

View Article and Find Full Text PDF

Biochemical and biophysical mechanisms macrophages use to tune phagocytic appetite.

J Cell Sci

January 2025

Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA.

Macrophages phagocytose, or eat, pathogens, dead cells and cancer cells. To activate phagocytosis, macrophages recognize 'eat me' signals like IgG and phosphatidylserine on the target cell surface. Macrophages must carefully adjust their phagocytic appetite to ignore non-specific or transient eat me signal exposure on healthy cells while still rapidly recognizing pathogens and debris.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!