In hunting for safe and cost-effective materials for post-Li-ion energy storage, the design and synthesis of high-performance solid electrolytes (SEs) for all-solid-state batteries are bottlenecks. Many issues associated with chemical stability during processing and storage and use of the SEs in ambient conditions need to be addressed. Now, the effect of water as well as oxyhdryl group ( OH) on NaBi O Cl are investigated by evaluating ionic conductivity. The presence of water and OH results in an increase in ionic conductivity of NaBi O Cl owing to diffusion of H O into NaBi O Cl , partially forming binding OH through oxygen vacancy repairing. Ab initio calculations reveal that the electrons significantly accumulate around OH and induce a more negative charge center, which can promote Na hopping. This finding is fundamental for understanding the essential role of H O in halide-based SEs and provides possible roles in designing water-insensitive SEs through control of defects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201912145 | DOI Listing |
Membranes (Basel)
December 2024
LIME Laboratory, CNRS, MADIREL (UMR 7246), Campus St Jérôme, Aix Marseille University, 13013 Marseille, France.
Anion Exchange Membranes (AEMs) are promising materials for electrochemical devices, such as fuel cells and electrolyzers. However, the main drawback of AEMs is their low durability in alkaline operating conditions. A possible solution is the use of composite ionomers containing inorganic fillers stable in a basic environment.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Unit of Chemical Technologies, Technology Centre of Catalonia, Eurecat, 43007 Tarragona, Spain.
The urgent need for sustainable, low-emission energy solutions has positioned proton exchange membrane fuel cells (PEMFCs) as a promising technology in clean energy conversion. Polysulfone (PSF) membranes with incorporated ionic liquid (IL) and hydrophobic polydimethylsiloxane-functionalized silica (SiO-PDMS) were developed and characterized for their potential application in PEMFCs. Using a phase inversion method, membranes with various combinations of PSFs, SiO-PDMS, and 1-butyl-3-methylimidazolium triflate (BMI.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Department of Green Chemical Engineering, College of Engineering, Sangmyung University, Cheonan 31066, Republic of Korea.
Four distinct pore-filling anion exchange membranes (PFAEMs) were prepared, and their mechanical properties, ion conductivity, and performance in anion exchange membrane water electrolysis (AEMWE) were evaluated. The fabricated PFAEMs demonstrated exceptional tensile strength, which was approximately 14 times higher than that of the commercial membrane, despite being nearly half as thin. Ion conductivity measurements revealed that acrylamide-based membranes outperformed benzyl-based ones, exhibiting 25% and 41% higher conductivity when using crosslinkers with two and three crosslinking sites, respectively.
View Article and Find Full Text PDFGels
December 2024
Clinical Biochemistry Laboratory, Near East University Hospital, Nicosia 99138, North Cyprus, Turkey.
This study examines the hemocompatibility of gellan-gum-based hybrid hydrogels, with varying gellan-gum concentrations and constant sodium alginate and silk fibroin concentrations, respectively, in accordance with ISO 10993-4 standards. While previous studies have focused on cytocompatibility, the hemocompatibility of these hydrogels remains underexplored. Hydrogels were formulated with 0.
View Article and Find Full Text PDFGels
December 2024
Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy.
Polyelectrolyte hydrogels are smart materials whose swelling behavior is governed by ionizable groups on their polymeric chains, making them sensitive to pH and ionic strength. This study combined experiments and modeling to characterize anionic hydrogels. Mechanical tests and gravimetric analyses were performed to track hydrogel mass over time and at a steady state under varying pH and salt concentrations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!