Background: The specific and accurate pathogenesis of diarrhea-type irritable bowel syndrome is still unclear.
Aims: We explored the mechanism of heat shock protein 27 (HSP27) in diarrhea-type irritable bowel syndrome to identify the key targets for the disease.
Methods: The human colonic epithelial cell lines Caco-2 and NCM460 were pretreated with KRIBB3 (a phosphorylation inhibitor of HSP27) and then stimulated with lipopolysaccharide for different times. The apoptosis ratios of Caco-2 and NCM460 cells were examined with Annexin V/PI assays. Cell growth was determined using the cell counting kit-8 assay, and the expression levels of IL-1β and IL-6 in the cell supernatant were analyzed by ELISA. In addition, the expression levels of HSP27 and the nuclear factor-κB (NF-κB) signaling pathway were examined by Western blot assay.
Results: Stimulation with lipopolysaccharide promoted the expression of HSP27 in colonic epithelial cells. HSP27 was phosphorylated at serine 78 and 82 after exposure to LPS. Apoptosis, growth inhibition, and inflammatory factor expression of lipopolysaccharide-induced colonic epithelial cells were greatly exacerbated by KRIBB3 treatment. In addition, KRIBB3 inhibited the phosphorylation of IκB-α and the activation of NF-κB. Gene silencing by small interfering RNA indicated that phosphorylation of HSP27 may regulate the NF-κB pathway.
Conclusions: HSP27 plays an important role in the inflammatory response of intestinal human colonic epithelial cells. HSP27 may protect intestinal epithelial cells against damage by regulating the NF-κB pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10620-020-06074-z | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.
Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Science, Utrecht 3584 CT, The Netherlands.
Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104.
Dorsal closure is a process that occurs during embryogenesis of . During dorsal closure, the amnioserosa (AS), a one-cell thick epithelial tissue that fills the dorsal opening, shrinks as the lateral epidermis sheets converge and eventually merge. During this process, both shape index and aspect ratio of amnioserosa cells increase markedly.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen 52074, Germany.
Postnatal establishment of enteric metabolic, host-microbial and immune homeostasis is the result of precisely timed and tightly regulated developmental and adaptive processes. Here, we show that infection with the invasive enteropathogen Typhimurium results in accelerated maturation of the neonatal epithelium with premature appearance of antimicrobial, metabolic, developmental, and regenerative features of the adult tissue. Using conditional Myd88-deficient mice, we identify the critical contribution of immune cell-derived mediators.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Innovative Genomics Institute, University of California, Berkeley, CA 94720.
The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!